
-

EK-108OLSD-003 .-'

c-1080/1090 SYSTEMnDESCRIPTloN

digital equipment corporation l marlborough, massachusetts

1st Edition, June 1975
2nd Printing, April 1976
3rd Edition, (Rev) January 1977

The drawings and specifications herein are the property of Digital Equipment
Corporation and shall not be reproduced or copied or used in whole or in part as
the basis for the manufacture or sale of equipment described herein without
written permission.

Copyright 0 1975, 1976, 1977 by Digital Equipment Corporation

The material in this manual is for informational
purposes and is subject to change without notice.
Digital Equipment Corporation assumes no respon-
sibility for any errors which may appear in this
manual.

Ptited in U.S.A.

This document was set on DIGlTAL’s DECset-8000
computerized typesetting system.

The following are trademarks of Digital Equipment
Corporation, Maynard. Massachusetts:

DEC DECtape PDP
DECCOMM DECUS RSTS
DECsystem-10 DIGITAL TYPESET-g
DECSYSTEM-20 MASSBUS TYPESET-l 1

UNIBUS

CONTENTS

SECTION 1

1.1
1’
1%
179 .*._
1 Z.3
1.2.4
1.3.5
12.6
1.3

SECTION 2

2.1
17 _._
7q _.>
2.4
2.5
2.6
2.6.1
2.6.1 .l
2.6.1.2
2.6.1.3
2.6.1 .4
2.6.1.5
2.6.1.6
2.6.2
2.6.2.1
2.6 3 ? ._._
2.6.2.3
2.6.2.4
2.6.2.5
2.6.2.6
2.6.3
2.6.3.1
2.6.3.’
2.6.3.3
2.6.3.4

PRINCIPLES OF TIME-SHARING

INTRODUCTION
OPERATION

Dynamic Scheduling
Soft ware Sharing
Communications
Control of Input/Output
File Handling
Slow Peripherals

RELIABILITY

DECsystem-I 0 PRIMER

INTRODUCTION
HARDWARE
OPERATING SYSTEM . : : : : : : : : :
NONRESIDENT SOFTWARE
MULTIPROCESSING::::::::::::::::::: .:
MULTIMODE COMPUTING

Time-Sharing
Command Language
Peripheral Devices
Spooling
Mass Storage File System
Core Utilization
General-Purpose Time-Sharing

Batch
Components
Use of System Features
Flexibility
Job Dependency
Error Recovery
Operator Intervention

Real-Time
Locking Jobs
Real-Time Devices

Page

SYSlO/l-1
SYSlO/l-2
SYSlO/l-3
SYSlO/l4
SYSlO/l-5
SYSlO/l-6
SYSIO/1-6
SYSlO/l-7
SYSlO/l-7

SYS10/2-1
SYS 1 o/2-2
SYS10/2-3
SYS10/24
SYS 1 o/24
SYS 1 o/24
SYSlO/24
SYS 10/2-s
SYS 1 o/2-5
SYS 1 O/“-S
SYSIO/2-5
SYS 1 o/3-5
SYS10/2-6
SYS10/2-6
SYS10/2-6
SYS 1 O/2-8
SYS10/3-8
SYS10/2-8
SYSl O/2-8
SYSl O/3-8
SYSlO/3-9
SYSl o/2-9
SYS10/2-9

High-Priority Run Queues SYS 1 O/2-1 0
Job Communication SYSl O/2-1 0

. . .
111

CONTENTS(CONT)

Page

SECTION 3 SYSTEM FEATURES

3.1
3.2
3.2.1
3” ._._
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
3.2.8
3.2.9
3.2.10
3.2.1 1
3.2.12
32.13
3.2.14
3.2.15
3.3
3.4
3.4.1
3.42
3.5
3.6
3.7
3.7.1
3.7.2
3.8.
3.9
3.10
3.11
3.12
3.12.1
3 1’ ’ . _._
3.12.2.1
3.1_._._ 1-7

3.13
3.14
3.15
3.16
3.17

CENTRAL PROCESSOR SYS10/3-1
INSTRUCTION SET SYS 1 O/3-1

Full-Word Data Transmission SYS 1 O/33
Half-Word Data Transmission SYS 1 O/33
Block-Transfer Instruction SYS 1 O/33
Byte ,Manipulation SYS 1 O/33
Business Instruction Set SYS 1 O/34
Logic Instructions SYS 1 O/3-5
Fixed-Point Arithmetic SYS10/3-5
Floating-Point Arithmetic SYS 10/3-5
Arithmetic Operation Modes SYS 1 O/3-5
Fixed/Floating Conversions SYS 1 O/3-5
Compare and Modify SYS10/3-5
Program Control SYS 1 O/3-6
Input/Output SYS 1 O/3-6
Unimplemented User Operations (UUOs) SYSI O/3-6
Trap Handling SYS10/3-6

INSTRUCTION FORMAT ’ : SYS10/3-6
NUMBER SYSTEM SYS10/3-6

Fixed-Point Arithmetic SYS10/3-7
Floating-Point Arithmetic SYS 1 o/3-7

EFFECTIVE ADDRESS CALCULATIGN ’ : : : : : : : : : : : : : : SYS10/3-8
GENERAL-PURPOSE REGISTER BLOCKS SYS 1 O/3-8
MEMORY SYSTEM : : : : : : : : : : : : : SYSlO/3-8

Core Memory SYS 1 O/3-8
Cache Memory SYS 1 O/3-9

PROCESSOR MODES SYS 10/3-g
PROCESS TABLES SYS10/3-10
MEMORY PROTECTIbN AND RELOCATION * : : : : : : : : : : : SYSI o/3-1 0
DIRECT I/O SYS10/3-13
CHANNEL I/O SYS10/3-13

External Data Channels SYS10/3-14
Integrated Data Channels SYS 1 O/3-1 4

.Massbus Controller SYS10/3-I 5
Channel Controllers SYS 10/3-l 5

PRIORITY INTERRUPT SYSTEM SYS10/3-16
TRAP FACILITY SYS10/3-17
PROGRAMMABLE CL&KS ’ : SYS10/3-17
CONSOLE/DIAGNOSTIC COMPUTER SYSlO/3-I 8
SYSTEM INTEGRITY FEATURES SYS10/3-18

SECTION 4

4.1
4’ ._
4.1.1
4.2.1 .I
42.1 .I?
4.1 ? _.&
4.2.3
4.2.4
42.5
4.2.5.1
42.5 2
4.2.5.3
4.2.6
4.2.7
427.1
4.2.7.3
427.3
4.2.7.4
42.8
42.9
42.10
42.1 1
4.2.12
42.13
4.214
4.2.14.1
4.2.14.2
4.2.14.3
4.2.14.4
4.2.14.5
42.15

1

4.3.1.4
4.3.1.5
4.3.1.6
4.3.1.7
4.3.1.8

CONTENTS(CONT)

Payee

THE HARDWARE

CONFIGURATIONS SYSlOi4-I
CENTRAL PROCESSOR SUBSYSTEM SYSI O/4-1

EBox SYSl O/4-9a
Hardware SYSI O/4-9a
Firmware SYS10/4-25

MBox SYS10/4-27
Meter Board SYS 1 O/4-28
E/M Interface SYS 10/4-29
SBus and External Memory SYS 1 O/4-29

Read Operations SYS I O/4-39
Write Operations SYS 1 O/4-30
Read-Pause-Write Operation SYS 1 O/4-30

DMA20 SY s 1 o/4-3 1
EBus SYS10/4-31

Output Operations SYS 1 O/4-32
Input Operations SYS10/4-33
Prommmable Interrupt (PI1 -7) Operation SYS10/4-34
High Priority (PIO) Interrupt Operation SYSl O/4-35

CBus SYS10/4-35
DTE20 SYS10/4-36
RH20 SYSlO/4-38
DIA20 : SYSlO/4-39
Interrupt Facility SYS 1 O/4-39
Trap Facility SYS IO/440
Internal Devices SYS 1 o/440

APR ... : SYS10/440
PI SYSlO/440
PAG SYS10/440
CCA SYS 1 o/440
TIM and-l&R’ ’ : : : : : : 1 : : : : : : : : : : : : : : : : SYSlO/440

External and Internal I/O Controllers and Devices
(Typical) SYS10/441
Machine Instructions SYSl O/441

CONSOLE PROCESSOR SUBSYSTEM SYSlO/441
Devices SYS10/442

KDI 1-A Central Processor SYS10/442
KY1 I-D Programmer’s Console SYS10/442
KWI 1-L Line Clock Option SYS10/442
MFl l-UP Memory SYS10/442
MM1 I-UP Memory SYS10/442
BM873-YD/YG ROM Loader Module SYS 1 O/442
DLl1 -C Asynchronous Line Interface SYS 1 O/443
DLl 1-E Asynchronous Line Interface SYSl O/443

CONTENTS (CONT)

Page

4.3.1.9
4.3.1.10
4.3.1 .l 1
4.3.1 .I2
4.3.1.13

4.32
4.3.3
4.3.3.1
4.3.3.2
4.3.3.3
4.3.3.4
4.3.3.5
4.3.4
4.3.5
4.3.5.1
4.3.5.2
4.4
4.5
4.5.1
4.5.1 .l
4.5.1.2
4.5.2
4.5.2.1
4.5.7.2
4.5.2.3
4.6
4.6.1
4.62
4.6.3
4.6.4
4.7
4.8
4.8.1
4.8.2
4.8.3
4.8.4

3.8.3.1
4.8.4.3
1.8.5
4.8.5.1

1.8.5.2

LA36 Keyboard Terminal SYSl O/443
RJP04/06 Disk File System SYS10/443

. TCll-G Magnetic Tape System SYSlO/443
BCll-A Unibus SYSlO/443
DTE20 Ten-Eleven (Console/Front-End Processor)
Interface SYS 1 O/443

Interdevice Transfers SYS 1 O/4-44
Functions SYS 10/4J4

Examine/Deposit Operations SYS10/414
TO 1 O/TO 11 Byte Transfer Operations SYS 1 O/445
Interprocessor Interrupts SYS lo/435
Diagnostic and Miscellaneous Console Functions SYS IO/446
System Bootstrap Function SYSl O/4-46

Modes SYS 1 O/4-46
Interprocessor Communications SYSlO/4-47

Communication Areas SYSlO/4;F7
Queue Processing/Messages SYS 1 O/447

MAIN MEMORY SUBSYSTEM SYSlO/418
SECONDARY MEMORY SUBSYSTEMS SYSlO/4-49

Disk Subsystems SYS10/4-50 -
RHP04/06 and RTP04/06 Disk Subsystem SYS 10/4-50
RHSO4 Disk Subsystem SYS 10/4-S 1

Magnetic Tape Subsystem SYS 1 O/4-52
TU70/71/72 Magnetic Tape Subsystem SYS 1 O/4-52
THUl6/TTUl6 Magnetic Tape Subsystem SYS 10/4-53
TU56 DECtape Subsystem SYS 10/4-53

BAlO UNIT RECORD (HARD COPY) EQUIPMENT SYSlO/4-53
CR10 Card Reader SYSlO/4-54
LPlO Line Printer SYSlO/4-54
CPlO-D Card Punch SYSlO/4-55
XYlO Plotter SYSlO/4-55

LPlOO LINE PRINTER SUBSYSTEM SYS10/4-55
COMMUNICATIONS SUBSYSTEMS . : : : : : : : : : : : : : : : : SYSlO/4-56

Communication Primer SYS 10/4-57
DC76 Asynchronous Communication Subsystem SYSlO/4-59
DC75-NP Synchronous Communications Subsystem SYSlO/4-60
DN871DN87S Universal Synchronous/Asynchronous
Front-End Subsystems SYS 1 O/4-61

Asynchronous Interfaces SYSlO/4-61
Synchronous Interfaces SYS 1 O/4-63

Communication Subsystem Components SYS 1 O/4-63

KG1 1-A XOR and CRC Unit (DC75-NP, DN87.
and DN87S)
DSl 1 Multiple ~ine’S&$ron~us Interface (DC75-NP)

SYS10/4-63
. . SYSlO/4-64 _

vi

CONTENTS(CONT)

4.8.5.3

4.8.5.4

4.8.5.5
4.8.6
4.8.7
4.8.8

SECTION 5

5.1
5.1 .l
5.12
5.1.3
5.1.4
5.1.5
5.1.6
5.1.7
5.2
5.3
5.3.1
5.32
5.3.3
5.3.4
5.3.5
5.3.6
5.4
5.4.1
5.42
5.5
5.5.1
5.52
5.5.3
5.6
5.7
5.7.1
5.72
5.8
5.8.1
5.82
5.8.3.1
5.822
5.8.2.3
5.8.1.4

Page

DHl 1 Asynchronous 16-Line Multiplexer (DC76. DN87,
and DN87S) SYS10/4-64
DMl I-BB Modem Control Unit (DC76, DN87,
and DN87S) SYS10/4-65
DQI 1 Synchronbus’Link Interface idN87 and DN87S) * : : SYS10/4-65

DC72-NP Remote Station SYS 1 O/4-66
DN80 (DAS80)-Series Remote Station SYS10/4-67
DAS92 Remote Station SYS 1 O/4-69

THE SOFTWARE

RESIDENT OPERATING SYSTEM SYSlO/S-1
Command Decoder SYS 1 O/j-3
Scheduler SYSl O/5-3
Swapper SYSlO/54
Control Routine SYS10/5-5
UUO Handler SYS 1 O/5-5
Device Service Routines SYS 10/5-j
Summary SYS 1 O/5-7

COMMAND CONTROL LANGUAGE SYS10/5-7
FILE SYSTEM : : : : : : : : : : : : : : : : SYSlO/5:7

File Handler SYSl O/5-8
File Structures SYSl O/5-9
File Protection SYS10/5-9
Disk Quotas SYSI O/5-9
File Operations SYSlO/5-10
Disk Storage Management SYS10/5-10

INPUT/OUTPUT : SYS10/5-10
Peripheral Device Assignment SYS 1 O/5-1 0
Spooling SYSlO/5-IO

MEMORY MANAGEMENT SYS10/5-11
Secondary Memory SYS10/5-11
Reentrant Software SYSl O/5-1 1
Virtual Memory SYS10/5-11

MULTIPROCESSING SYSTEMS ’ : : : : : : : : : : : : : : : : : : : SYS10/5-12
INTERJOB COMMUNICATIONS SYS 1 O/5-1 2

Shared Data Areas SYSlO/S-12
Interprocess Communication Facility SYSl O/S-l 2

NONRESIDENT SYSTEM SOFTWARE . : : : : : : : : : : : : : : SYS10/5-13
MACRO Assembler SYS 1015-l 4
Compilers

ALGOL’ : : : : : : : : : : :
................................ SYSlO/5-14

SYS10/5-14
BASIC SYS10/5-15
COBOL SYSlO/S-15
FORTRAN SYS10/5-16

vii

CONTENTS(CONT)

5.8.3
5.8.3.1
5.8.3.2
5.8.3.3
5.8.4
5.8.4.1
5.842
5.8.4.3
5.8.4.4
5.8.5
5.8.5.1
5.8.5.2
5.8.5.3
5.8.5.4
5.8.5.5
5.8.5.6
5.8.5.7
5.8.5.8
5.8.5.9
5.8.5.10
5.8.6
5.8.6.1
5.8.6.1
5.8.6.3
5.8.6.4
5.9
5.9.1
5.9.2
5.9.3
5.9.4
5.9.5
5.10
5.1 1
5.1 1.1
5.11.3
5.i 1.3
5.11.4
5.11.5
5.11.5.1
5.1 1.5.2
5.1 1.5.3
5.1 1.5.1
5.1 1.6

Interpreters SYS IO/j-l 7
. AID SYSlO/s-17

APL SYSlO/S-17
CPL SYS10/5-18

Editors SYSlO/j-18
LINED SYS10/5-18
TECO SYS10/5-18
SOUP SYSlO/j-I9
RUNOFF SYSlO,‘j-19

Utilities SYSlO/5-19
CREF’ : SYSlO/s-19
DBMS-10 SYSlO/s-20
DDT SYS 1 O/5-10
FAILSAFF/BACKUP’ : SYSlO/5-1-O
FILEX SYSlO/j-20
ITPS-10 SYSlO/S-21
LINK-10 SYSlO/S-11
PIP
MACYI 1 and b&Xl’1

....................................... SYS 1 o/5-32
SYSlO/5-1:

MCS-I 0 SYS 1 O/5-22
Monitor Support Programs SYS 1 O/5-23

MONGEN SYS 1 O/5-33
OPSER SYS10/5-23
LOGIN SYS 1 o/5-33
KJOB-LOG&% . : SYS 10/S-23

CONSOLE SOFTWARE SYSlO/S-23
Basic Command Facility Description SYS 1 O/5-24
General System Bootstrap SYSl O/5-25
Diagnostic Environments SYS 10/5-25
Diagnostic Options SYS 1 O/5-35
System Failure Procedures : SYS10/5-36

COMMUNICATION SOFTWARE SYS 10/‘5-26
DIAGNOSTIC SOFTWARE SYS10/5-77

Operating System Features SYS 1015-27
Integrated Diagnostic Logic SYS 10/S-1?
On-Line Preventive Maintenance SYS10/5-28
Remote Diagnosis SYS 1 O/5-28
Monitor Error Reporting Programs SYS IO/j-38

Overview of the Monitor Error Reporting System SYSlO/5-28
Hardware Error Information SYS10/5-28
Reporting Programs SYSlOij-29
Testing Programs SYS 101 S-30

Diagnostic Programs SYS 1 O/5-30

APPEND IX A ABBREVIATIONS AND %lNEMONICS

.
Wl

-

-

FIGURES

Figure No. Title Page

l-l
l-2
l-3
l-4
l-5
2-1
2-2
‘-3
2-4
3-l
3-2
3-3
3-4
3-5
4-l
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
5-1

Table No.

4-l
5-l

Swapping of User Programs SYSlO/l-3
Memory Structure SYSlO/l-3
Software Types SYS10/14
User/Computer Communications SYS 1 O/ 1-5
File Structure SYSlO/l-7
DECsystem-I 0 Components SYS 1 O/2-1
A Typical DECsystem-1080 SYS 1 O/2-2
A Typical DECsystem-1090 SYS 10/Z-3
Programs in the Batch System SYS10/2-7
Instruction Set Constructs SYS10/3-3
Move Instruction Construct SYSlO/34
Instruction Format SYS 1 O/3-7
User Process Table SYS10/3-11
Executive Process Table SYSlO/3-12
DECsystem-I 080 (Typical) Block Diagram SYSl O/4-3
DECsystem-1090 (Typical) Block Diagram SYSl O/4-7
DECsystem-I 080 Central Processor Subsystem Block Diagram SYS 1 O/4-1 1
DECsystem-1090 Central Processor Subsystem Block Diagram SYS10/4-17
Instruction. Dispatch, and Control Formats SYSI O/4-16
IBM Compatible Message Format SYS 1 O/4-63
BCC Computation for Transparent Transmission SYS 1 O/4-63
DC72-NP Remote Station SYS 1 O/4-66
DN80Series Remote Station .. : SYS 1 O/4-68
DAS92 Remote Station (Typical Configuration) SYS10/4-69
The Resident Operating System SYS 1 O/5-2

TABLES

Title Page

Interleaving Configurations SYS 1 O/4-29
File Protection Scheme SYS 1 O/5-8

ix

MO607

DECsystcm IO80/ 1090

-

PREFACE

This manual contains the system level technical description of the DECsystem-1080/1090, the KLlO-
A/B-based machines. The companion interface and unit level technical descriptions and other related
manuals are identified in the document titled Introduction to KLIO-Based System Technical Description
(EK-KLIO-TD-XXX). There are five sections in this manual. It provides an integrated hard-
ware/software systems presentation with appropriate conceptual overviews of time-sharing/batch
operation. DECsystem-10 principles, and system features. The five sections comprising this system
level presentation are:

I. Principles of Time-Sharing
7 &. DECsystem- IO Primer
3. System Features
4. The Hardware
5. The Software

The purpose of this manual is to provide a comprehensive overview of the KLIO-based DECsystem-10
machines. Intended target population is field service, manufacturing, and customer training personnel
and students.

SECTION 1
PRINCXPLES OF TIME-SHARING

1.1 INTRODUCTION
Early computers were the province of the mathematician. Used mainly to solve differential equations,
the systems were narrow in scope and poorly used. Because few persons were knowledgeable enough to
employ the enormous processors, one individual could monopolize computer time - sit at the console
and solve problems in step-by-step fashion.

As more people discovered computing techniques, it was no longer practical to let a few persons
monopolize computer time. To increase machine efficiency, batch processing was introduced. In this
mode of operation, no time was wasted between jobs. Programs were punched on cards and the cards
stacked and fed to the computer in batches. Operation of each program was governed by control cards
that took the place of the human operator.

Since card reading is a relatively slow process, some early systems employed a small computer to read
the cards and transfer program information to magnetic tape that was then input to the large com-
puter. As a further refinement, programs were assigned priorities, with short jobs being executed first
to minimize job turnaround.

But what about the computer user? As computer utilization improved, program development took
more time. To develop a new program, a user performed the following procedure:

After writing the program on paper, he carried it to a keypunch operator to have the cards punched
and verified. A day or so later, when the program was returned, the user checked for punching errors,
then returned the cards to the keypunch operator for corrections.

Next. he sent the cards to the computer center for compilation. The compilation, which might not be
returned for a half day or more, could reveal spelling or syntactical errors. The cards then had to be
changed and resubmitted - another half day’s wait. If the next compilation was successful and the
program was run, program logic errors might be discovered, meaning new cards, new compilation, etc.
In addition, the user often studied reams of computer listings to find the errors. Using these inefficient
methods, even simple programs might take weeks to develop.

Batch processing maximizes machine efficiency in routine data processing operations where tum-
around is not critical. But for program development and modification, the user requires another mode
of operation. The user needs a way to “interact” with the computer - to feed his program to the
system, line-by-line, and continuously check the results.

sYsio/l-1

-

In fact, the user may want to develop interactive programs. These programs, which are extremeiy
productive tools, ask the user questions and perform an analysis based on his answers. Electronic
circuit design programs are a prime example. The computer actually designs the circuit by asking the
engineer questions and formulating and manipulating data based on the answers. In addition, inter-
action provides a new dimension in management information reporting. Via an interactive terminal, a
manager can request summaries. plot trends in plant operation and sales, and select special data for
use in decision making.

If the user had unlimited funds, he might be tempted to buy or lease a large computer system he could
dedicate to his work that would provide sufficient power, many peripherals, and a large variety of
software. With such a system, the user could develop programs interactively or utilize batch processing
for routine tasks. However, costs normally preclude the dedication of a large system to a single user.

By using time-sharing, the user has most of the benefits of a dedicated system at a small fraction of the
cost. Time-sharing, with today’s technology, allows a large powerful computer to handle 10, 50, 100,
or more users simultaneously. Through a choice of terminals, the user can interface with the system or
initiate batch processing which runs concurrently. The user also has access to a choice of mass storage
devices and other peripherals as well as a selection of languages and application programs. Since
response is fast, the user appears to have a dedicated system; yet costs are shared. Each user pays only
for the time and facilities that he requires and does not pay for the time the machine is idle.

1.2 OPERATION
A time-sharing system is not just any computer with some additional hardware and software. It is a
system such as D ECsystem- 10 designed specifically for time-sharing in an interactive computing envi-
ronment. Otherwise. faciiities are limited, fewer users can be handled efficiently, and the economics are
unattractive. At a minimum, a time-sharing system requires a central processor with sufficient speed
and power, input/output terminals, and an amount of main memory (core or semiconductor) adequate
to hold several users.

In a simple time-sharing system, each program is assigned a fixed time slice (time quantum) and
operation is switched from one program to another in round robin fashion until each program is
completed. Essentially, if each user receives l/60 of a second and 12 users are ‘*on” the system, each
user will receive service every l/5 of a second.

The time-sharing system performs interactive multiprogramming; that is, it allows several programs to
reside in main memory simultaneously and to operate sequentially. The switching between programs,
called context switching, is initiated by a clock which interrupts the central processor to signal that a
certain time period has elapsed. The interrupt function is provided by a priority interrupt system. A
monitor. also called an operating system or executive program, directs the execution of these tasks and
performs other housekeeping duties.

The monitor is also involved in keeping the actions of a user within his assigned memory space. An
address mapping scheme where a page table containing the address and access keys is set up by the
monitor. limits the core area that a particular user can access. Any attempt by the program to read or
change information outside that limit will automatically stop the program and notify the monitor.

The system discussed so far services a number of users sequentially in round robin fashion. To increase
the number of users serviced, more main memory is required. However, since core is expensive, a
secondary memory is employed. This memory - usually magnetic disk or drum - is slower than core or
main memory but provides greatly increased capacity at reasonable cost. User programs can be
located in secondary memory and moved into main memory for execution. Programs entering main
memory exchange places with a program (or programs) that has just been serviced by the central
processor. This operation is called swapping (Figure l-l).

SYS 101 l-2

I MONITOR I

SWAPPING
DEVICE

I USER 4

I

Figure 1-l Swapping of User Programs

In operation. main memory is divided into separate memory blocks (modules). Secondary memory is
connected to these modules through a high-speed input/output processor - a hardware device that
allows the disk or drum to swap a program into any one of the main memory modules without any aid
from the central processor. This structure allows the central processor to be operating a user program
in one module of memory while programs are being swapped to and from another module. This
independent overlapped operation, which greatly improves efficiency and processing power, is charac-
teristic of an asynchronous system design philosophy (Figure l-2).

nn

Figure 1-2 Memory Structure

l-2.1 Dynamic Scheduling
Round robin scheduling, in which each program operates in sequence and receives a fixed amount of
time, is effective only if ail programs have similar requirements. Such is not the case, however. At any
particular time, a ttme-sharing system will be handling some programs which require extensive
amounts of computing time (and are said to be compute bound) and other programs that must stop
frequently for input or output (I/O bound).

SYS16/1-3

To serve programs at and between these two extremes, the scheduling algorithm must provide frequent
service to I,/0 bound programs and must give compute bound jobs longer time quantums (time slice)
to prevent wasteful swapping. A simple dynamic scheme could provide two queues - one for each type
of job. When a user first logs onto the system, he is placed in an I/O bound queue (waiting line) where
he receives frequent service and small time quantums. If the program is not completed or does not
request input or output during the time allotted, the job needs more computing time and is placed in
the compute bound queue. Thus, the scheduling algorithm optimizes system efficiency by automat-
ically adjusting to program requirements.

In the present state of scheduling art, algorithms are constantly being changed and improved. Current
algorithms are extremely sophisticated, providing excellent service for most time-sharing job mixes.
They also allow line tuning, if such modifications are necessary. The ability of the algorithm to match
processing to program requirements ensures the best service possible for all user programs.

In an efficient time-sharing system, monitor functions (referred to as monitor overhead) take 5 to 10
percent of central processor time, making 90 to 95 percent of the time available to users.

1.2.2 Software Sharing
Since users of large time-sharing systems have varying requirements, a good system provides a wide
variety of software - interactive languages such as BASIC and AID for the computations of the
engineer and scientist, FORTRAN for more compiex calculations, COBOL for data processing func-
tions. Therefore, many users can have compiiers and other common programs in core at the same time.

To prevent excessive core usage that results when a program is duplicated for several users, reentrant
software is employed. That is, the program is written in two parts. One part contains pure code (reen-
trant code) that is not modified during execution and can be used to simultaneously service any num-
ber of users. For example, the pure code portion of FORTRAN can service multiple FORTRAN
users. A separate, second part of the program belongs strictly to each user and consists of the code and
data that is developed during the compiling process (impure code). This section is stored in a separate
area of core. A comparison of memory usage in the non-reentrant and reentrant systems is shown in
Figure I-3.

FORTRAN
COMPILER 1

COMPILER 2

COMPILER 3

NON- REENTRANT

Figure 1-3

PURE COOE

Software Types

SYSlO/l-4

What are the benefits of reentrant software? First, less core is required. For example. a reentrant
system can service three FORTRAN users with one 8K compiler and three 2K user areas. a total of
14K. A non-reentrant system would require 30K for the three 8K compilers and three 2K user areas.
Total savings in this case is 16K of core. Using less core means that more programs can fit into a given
amount of space. The monitor then swaps less often and spends less time swapping the smaller impure
sections.

There are other savings too. Since the pure code never changes, it does not have to be returned to disk
storage (swapped out). As long as a single copy is maintained on the disk, it can be called into core at
any time. Programs can be swapped in or “overlaid” on top of the compiler to take its place in core
whenever the compiler is not needed.

To protect the pure code from being modified, an address mapping feature, the pager, is implemented.
This feature allows a program to execute as two separate segments where the pure segment is pro-
tected. User programs can also be written to make use of this protection. For example, a user might
develop a reentrant information retrieval system written in COBOL.

1.2.3 Communications
Communication between the remote user and the computer passes over the conventional dial-up tele-
phone network. User terminals can therefore be located anywhere that phone service is available and
connected to any computer system; feasibility is limited only by long distance phone rates.

Each user terminal is connected to a data set or modem (modulator-demodulator) which converts user
terminal output into a signal suitable for the telephone network. At the computer end of the phone
lines. there is another data set which reconverts the signal and feeds it to a device called a data line
multiplexer or data line scanner. This device, in turn, feeds the information from a number of terminals
to the central processor (Figure l-4).

DATA
LINE

SCANNER

Figure l-4 User/Computer Communications

SYSlO/l-5

The number of data sets employed at the user end of the system is unlimited. At the computer end of
the communications network. however, the number of data sets is limited by the number of users that
can be serviced simultaneously by the system.

In order to gain access to the system, the user dials the system phone number from his data set. The
telephone network handles the call, scanning the data sets at the computer system. If all of the sets are
busy, the user receives a busy signal, just as he would with normal phone service. If a set is available.
the telephone network rings it, causing the data line scanner to interrupt the monitor. The computer
answers the call, placing the user in communication with the monitor. The terminal is then on-line and
ready for operation.

1.2.1 Control of Input/Output
A time-sharing system has performed its basic function if it allows a number of users simultaneous
access to a central computer. However, to be fully useful, the system should also allow the users access
to other system resources - storage devices for his programs and data, line printers, card readers, etc.
For example. the user should be able to choose between magnetic tape and disk for program storage. If
he has a 50-page report to produce, he should be able to employ a line printer instead of his terminal. If
users controlled these devices, however, much confusion might result.

To prevent users from interfering with each other, the monitor coordinates input and output (I/O).
The processor has an operating mode switch (user/executive mode) which the monitor sets before a
user program is run. If the program attempts to perform input or output while in the user mode, the
user program is stopped and the monitor takes over. Control thus diverted to the monitor is called
trapping. When input/output is prevented or trapped, the computer is said to be in user mode: when
I/O can be performed. the system is in executive or monitor mode.

User-to-monitor-mode switching occurs when the user requests I/O or other special functions to be
performed by the monitor. The requests are made by using computer instructions referred to as mon-
itor calls or programmed operators.

The monitor can also optimize throughput, keeping al! devices busy simultaneously (overlapping of
I/O operations) and executing jobs in the most efficient order. For example, it will start the read
mechanisms on several disk packs in motion, simultaneously, to reduce the time required to find the
desired data on each pack (access time). In addition, by means of the disk pack controller, the monitor
can determine which of ail needed data on a pack is closest to the read mechanism and can be obtained
in the shortest amount of time (latency optimization).

12.5 File Handling
If a user does not require a fast device for his exclusive use (private device) he can elect to use a public
device and. in effect. perform time-sharing with a disk or drum. Under these conditions, user programs
and data coexist on the device. Therefore, a filing system is necessary if program and data segments are
to be retrieved in proper order.

Data is transferred from memory to a peripheral device as a block of words or record. (A word is the
number of binary digits or bits that the central processor can retrieve and “operate on” at one time.)
Record length can be arbitrary or dictated by the physical device being used, e.g.. the number of
columns on an 80-column card or on a 132-column line printer. For DECsystem-IO disk files. the
length is 118 words, so that blocks of 128 words are written at one time on a disk or other similar
de&e.

For convenience each user’s blocks are organized in groups called files which are listed in proper order
in ;1 special block on the disk called the users’ file directory (UFD). A master file directory (MFD) is
then required to maintain the locations of the UFDs and also keep track of the number of blocks of
free storage that can be assigned to new files. The resulting hierarchy is shown in Figure l-5.

, SYS IO,, l-6

MASTER
FILE

DIRECTORY

Figure l-5 File Structure

Files. like memory, must be protected from access by unauthorized users. When a user creates a file, he
can restrict it. specifying whether others can have access, and if access is permitted, whether the files
can be modified or only read. With such an arrangement, programmers in various plant locations can
use the same data to work simultaneously on the same project, but unauthorized personnel cannot
modify or read the liles.

1.2.6 Slow Peripherals
Fast peripherals can be time-shared. But what about the slow peripherals, such as the line printer and
the card reader? Should other users be required to wait 20 minutes or so while one user ties up the line
printer?

To eliminate conflicts, the user can request a slow device for his exclusive or private use. For example.
he can request the line printer or card reader. Also available for private use are removable storage
devices such as magnetic tape, DECtape (DIGITAL’s low cost, high reliability magnetic tape), or disk
packs. If the device is not already assigned to another user, the monitor, in cooperation with the
operator, grants his request and the user has the device at his disposal until he releases it or logs off the
system. For example, the user could request the use of multiple disk pack drives (exclusive use) to sort
a payroll transaction file, or he could assign himself a DECtape drive and ask the system operator to
mount the DECtape that contains his own personal library of programs.

Spooling is another method for handling data to or from slow peripherals. In this method, the slow
device is simulated by a fast peripheral such as a disk. That is, all output for the line printer or card
punch is deposited on the disk. The data on the disk is later “unspooled,” with a special program
transferring information to the slow device.

A program that has data for a slow device thus waits only milliseconds while the data is being depos-
ited on a disk, instead of minutes or hours for a turn at the line printer. Input from slow devices can
also be spooled, a particularly useful method for batch processing.

1.3 RELIABILITY
With a large number of users depending on its operation, the time-sharing system must be extremely
reliabie. A system with 99 percent reliability can be “down” 14 minutes during a 24hour working day.
If that 14 mmutes affects only one user, reliability may be acceptable. However, if it affects a large
number of users, the consequences are more serious.

SYSlO/l-7

-
The problem is also complicated by the fact that reliability is a function of both hardware and soft-
ware. It may take years, for example, to experience all the events that could uncover an error in
software as complex as a time-sharing monitor.

Today’s hardware and software has reliability buiit in. Hardware is designed in modular fashion so that
failed components can be removed and new replacements “plugged in.” Some components also con-
tain self-testing features that detect potential faiiures. Software is designed to be “defensive”; that is, it
anticipates certain types of failures and helps to minimize their effects. For example, the software
might note parity errors and limit their effect to the program being operated.

Diagnostic software can run routinely as one of the time-sharing users. Software can also maintain a
log of failures, so that patterns can be established and problems remedied before serious damage
occurs. Systems that employ these reliability techniques keep downtime at a minimum.

sYSlO/ 1-8

SECTION 2
DECsystem-10 PRIMER

2.1 INTRODUCTION
The DECsystem-10 is more than a processor and its associated peripheral devices. Because it is a
system. there are many parts, or components, working together to achieve a goal in a manner that is
both convenient for the user of the system and advantageous for the operation of the system. It is a
machine designed to be utilized concurrently by many users who wish to perform various operations.
There are three major components of the computing system, as shown in Figure 2-1: the actual
machine, or hardware; the operating system, or monitor; and the languages and utilities, or non-
resident software.

DIRECT
I/O PATH

ACTUAL
MACHINE
(HARDWARE1

METHODS OF
INPUT

NON-RESIDENT
SOFTWARE

Figure Z- 1 DECsystem- 10 Components

SYS 10/2-l

2.2 HARDWARE
The DECsystem-IO hardware consists of one or two central processors, various I/O processors, and
various memories and input/output devices. There are now 11 basic system configurations included in
the DECsystem-10 family; each configuration is distinguished by the hardware associated with the
type and number of central processor and the type and number of I/O processors. By adding hardware
to an individual system, additional performance is achieved. However, when adding hardware to
expand from a small system to a larger system, no software changes are required in user programs. A
single operating system and command control language can be used for all configurations of the
DECsystem- 10. Simplified block diagrams illustrating the 1080 and 1090 systems (the KLlO-based
systems) are shown in Figures 2-2 and 2-3.

t 4 MILLION WOROS MAX 1
BUS

COMYUNICATION
aSYNC LlNES

f/O
PROCESSOn

COMMUNICATION
PROCESSOR

SYNC LINES

I TAPE

Figure 2-2 A Typical DECsystem-1080

SYSlOI2-2

/ 4 MILLION WORDS MAX ! -BUS

CENTRAL
PROCESSOR

UNIBUS FRONT-END
PROCESSOR

[*I [rnPEJ [T&q
ASYNC AND SYNC LINES

I/O
PROCESSOR

-~ UNIBUS COMMUNICATlON

J

, PROCESSOR
I/O 8 II0

PROCESSOR

ASYNC LINES

SYNC LINES

LINE El PRINTER

Figure 2-3 A Typical DECsystem-1090

2.3 OPERATING SYSTEM
The DECsystem-10 hardware has numerous capabilities: it is powerful, fast, and highly sophisticated.
Because of its complexity, this machine is not usually manipulated directly by its users. The users
communicate with an intermediary, the operating system, in order to direct their problems to the
actual machine and to receive solutions back. With many users on the system, this second component
of the DECsystem-10 must also keep track of what each user does and the devices and system
resources that each user accesses. Though the operating system cannot be seen like the actual machine,
the action of the operating system is the most important and noticeable part of the system to each user.
It is true that the operating system can do nothing for the user if the actual machine does not exist, but
the user normally does not think of this. If the operating system accomplishes for him what he wants
the actual machine to do, he is satisfied. Therefore, it is important to the user that he depend on the
same operating system regardless of the hardware that composes the actual machine.

The operating system is always resident in main memory of the actual machine and is composed of
three parts (Figure 2-l). Because there are so many services that can be obtained from the operating
system, including the allocation of core memory, processor time, and devices of the actual machine,
one part, the service request handler, is responsible for accepting requests for these services. The
service request handler passes the requests to another part, the sharable resource allocator, which is
responsible for allocating the services requested. If the requested service is for use of a device, the I/O
service routines are then notified to carry out the user’s request.

SYS10/2-3

2.4 NONRESIDENT SOFTWARE
The third component of the DECsystem-10 is the nonresident software, those programs necessary for
the varied operation of the computing system. This software includes the compilers, assemblers, edi-
tors, debugging programs, and operating system support programs. These software programs reside on
a high-speed mass storage device of the actual machine and are brought into memory when needed by
a user. By utilizing the nonresident software, the user of the computing system can create programs,
transfer them from one device to another, compile, edit, execute, and debug them, and then receive the
results of execution on any specified device.

2.5 MULTIPROCESSING
The DECsystem- IO can be a single-processor system or a dualcprocessor system, composed of a prima-
ry processor and a secondary processor. Each processor in the dual-processor system runs user pro-
grams, schedules itself, fields instruction traps, and processes most requests to the operating system. In
addition to these tasks, the primary processor also has control of ail the input/output devices. This is
because only the primary processor has access to the I/O bus. The primary processor completes any
job that the secondary processor couid not finish because of an I/O request to the operating system.
Both processors are connected to the same memory and execute the same copy of the operating system,
thereby saving core memory over a multiprocessing system in which each processor has its own copy.

The primary objective in the DECsystem-10 dual-processor environment is to provide more processing
power than that found in the single-processor DECsystem-IO. This means that with the addition of the
second processor. more users can run at the same time. If more users are not allowed on the system, the
addition of the second processor reduces the elapsed time required to complete the processing of most
programs.

2.6 YvlIL’LTIMODE COMPUTING
The DECsystem-10 is designed for the concurrent operations of time-sharing, multiprogram batch,
real-time, and remote communications in either single- or dual-processor systems. In providing these
multifunction capabilities. the DECsystem-10 services interactive users, operates local and remote
batch stations, and performs data acquisition and control functions for on-line laboratories and other
real-time projects. By dynamically adjusting system operation, the DECsystem- 10 provides many fea-
tures for each class of user and is therefore able to meet a large variety of computational requirements.

2.6.1 Time-Sharing
Time-sharing takes maximum advantage of the capabilities of the computing systemby allowing many
independent users to share the facilities of the DECsystem-IO simultaneously. Because of the inter-
active, conversational, rapid-response nature of time-sharing, a wide range of tasks - from solving
simple mathematical problems to implementing complete and complex information gathering and
processing networks - can be performed by the user. The number of users on the system at any one
time depends on the system contiguration and the job mix on the system. DECsystem-10 time-sharing
is designed to allow for up to 150 command terminals. Interactive terminals can include CRTs, hard
copy terminals. and other devices which operate at speeds of 110 to 9600 baud. Terminal users can be
located at the computer center or at remote locations connected to the computer center by commu-
nication lines.

Time-sharing on the DECsystcm-IO is general-purpose, i.e., the system is designed in such a way that
the command language, input/output processing, file structures, and job scheduling are independent
of the programming language being used. In addition. standard software interfaces make it easy for the
user to develop his own special language or systems. This general-purpose approach is demonstrated
by the many special-purpose programming languages implemented by DECsystem-10 users.

SYSlOl2-4

2.6.1.1 Command Language - By allowing resources to be shared among users, the time-sharing
environment utilizes processor time and system resources that are wasted in single-user systems. Users
are not restricted to a small set of system resources, but instead are provided with the full variety of
facilities. By means of his terminal, the user has on-line access to most of the system’s features. This
on-line access is available through the operating system command language, which is the means by
which the time-sharing user communicates with the computing system.

Through the command language, the user controls the running of his job, or task, to achieve the results
he desires. He can create, edit, and delete his files; start, suspend, and terminate his job: compile.
execute. and debug his program. In addition, since multiprogramming batch software accepts the same
command language as the time-sharing software, any user can enter his program into the batch run
queue. Thus. any time-sharing terminal can act as a remote job entry terminal.

2.6. I.2 Peripheral Devices - With the command language, the user can also request assignment of any
peripheral device, e.g., magnetic tape, DECtape, and private disk pack, for his own exclusive use.
When the request for assignment is received, the operator verifies that the device is available to this
user, and the user is granted its private use until he relinquishes it. In this way, the user can also have
complete control of devices such as card readers and punches, paper tape readers and punches, and
line printers.

2.6.1.3 Spooling - When private assignment of a slow-speed device (e.g., card punch, line printer,
paper tape punch, and plotter) is not required, the user can employ the spooling programs of the
operating system. Spooling is a method by which output to a slow-speed device is placed on a high-
speed disk or drum. This technique prevents the user from using unnecessary time and space in core
while waiting for either a device to become available or output to be completed. It also allows the user
to defer output until it is needed. In addition. the device is managed to a better degree because the users
cannot tie it up indefinitely. and the demand fluctuations experienced by these devices are equalized.

2.6.1.4 Mass Storage File System - Mass’storage devices, such as disks and drums, usually cannot be
requested for a user’s exclusive use, but must be shared among all users. Because many users share
these devices, the operating system must ensure independence among the users: one user’s actions must
not affect the activities of another unless the users desire to work together. To guarantee such inde-
pendence. the operating system provides a file system for disks, disk packs, drums, and DECtapes.
Each user’s data is organized into one or more 128-word blocks called files. The user gives a name to
each of his files, and the list of these names is kept by the operating system for each user. The operating
system is then responsible for protecting each user’s file storage from intrusion by unauthorized users.

In addition to allowing independent file storage for users, the operating system permits sharing of files
among individual users. For example, programmers working on the same project can share the same
data in order to complete a project without duplication of effort. The operating system lets the user
specify protection codes. or rights, for his files. These codes designate if other users may read the file,
and after access, if the files can be modified in any way.

The user of the DECsystem- 10 is not required to preallocate file storage; the operating system allocates
and deailocates the file storage space dynamically on demand. Not only is this convenient for the user
because he does not have to worry about allocation when he is creating files, but this feature also
conserves storage by preventing large portions of storage from being unnecessarily tied up. However, a
user can preallocate file storage to guarantee its availability.

2.6.1.5 Core Utilization - The DECsystem-IO is a multiprogramming system, i.e., it allows multiple
independent user programs to reside simultaneously in core and to run concurrently. This technique of
sharing core and processor time enhances the efficient operation of the system by switching the proces-
sor from a program that is temporarily stopped because of I/O transmission to a program that is
executable. When core and the processor are shared in this manner, each user’s program has a memory
area distinct from the area of the other users. Any attempt to read or change information outside the
user access area immediately stops the program and notifies the operating system.

SYS 1012-5

Because available core can contain only a finite number of programs at any one time, the computing
system employs a secondary memory, usually disk or drum, to increase the number of users serviced.
User programs exist on the secondary memory and move into core for execution. Programs in core
change places with the programs being transferred from secondary memory for maximum use of
available core. Because the transferring, or swapping, takes place directly between core and the sec-
ondary memory, the central processor can be operating on a user program in one part of core while
swappmg is taking place in another. This independent overlapped operation greatly improves system
utilization by increasing the number of users that can be accommodated at the same time.

To further increase the utilization of core, the operating system allows the users to share the same copy
of a program or data segment. This prevents the excessive core usage that results when a program is
duplicated for several users. A program that can be shared is called a reentrant program and is divided
into two parts or segments. One segment contains the code that is not modified during execution (e.g.,
compilers and assemblers) and can be used by any number of users. The other segment contains the
user’s code and data that are developed during the compiling process. The operating system invokes
protection for shared segments to guarantee that they are not accidentally modified.

The virtual memory option permits a user program to execute with an address space greater than the
physical memory actually allocated to that program during execution,, User jobs are swapped as
described above. However, the entire program may not necessarily be in core during execution. Pro-
grams are divided into pages, each of which is 512 words long. Some of these pages may remain on
secondary storage while the program executes. When a virtual memory job attempts to access a page
that is not in core, a page fault handler decides which page or pages to remove from core and which to
bring in from secondary storage.

2.6.1.6 General-Purpose Time-Sharing - Time-sharing on the DECsystem- IO is general-purpose, i.e.,
the system is designed in such a way that the command language. input/output processing, file struc-
tures, and job scheduiing are independent of the programming language being used. In addition,
standard software interfaces make it easy for the user to develop his own special language or systems.
The general-purpose approach is demonstrated by the many programming languages implemented by
DECsystem- IO customers.

2.6.2 Batch
Batch software (GALAXY-IO) enabies the DECsystem-IO to execute up to I28 batch jobs con-
currently with time-sharing jobs. Just as the time-sharing user communicates with the system by way of
his termmal. the batch user normally communicates by way of the card reader. (However, he can enter
his job from an interactive terminal.) Unlike the time-sharing user, the batch user can punch his job on
cards. insert a few appropriate control cards, and leave his job for an operator to run. In addition, the
user can debug his program in the time-sharing environment and then run it in batch mode without
additional coding.

2.6.2.1 Components - The GALAXY- IO system (Figure Z-4) consists of a series of programs: the
input spooler, SPRINT; the batch controller, BATCON: the system queue manager and scheduler,
QU.I\SAR: and the output spoolers, LPTSPL and SPROUT. The input spooler is responsible for
reading the input from the input device and for entering the job into the batch controller’s input queue.
The input spooler sends a message to QUASAR to do the actual entering into the batch input queue.
Although the input spooler is oriented toward card reader input, disk and magnetic tape also can be
handled. The input information is then separated according to the control commands in the input deck
and placed into disk files for subsequent processing. In addition, the input spooler creates the job’s log
file and enters a report of its job processing, along with a record of any operator intervention during its
processing. The log file is part of the standard output that the user receives when his job terminates.

SYSlO;1-6

- ‘/ I ’ I
t

r 1 / I

Figure 2-4 Programs in the Batch System

After the input spooler reads the end-of-file and closes the disk files, it makes an entry in the batch
controller’s input queue. The batch controller processes batch jobs by reading the entries in its queue.
The control file created by the input spooler is read by the batch controller, and data and nonresident
software commands are passed directly to the user’s job. Operating system commands are detected by
the batch controller and passed to the operating system for action. Most operating system and non-
resident software commands available to the time-sharing user are also available to the batch user.
Therefore. only one control language need be learned for both time-sharing and batch. During the
processing of the job and the control file, the batch controller adds information to the log file for later
analysis by the user.

QUASAR is responsible for scheduling jobs and maintaining both the batch controller’s input queue
and the output spooling queues. A job is scheduled to run under the batch controller according to
external priorities, processing time limits, and core requirements which are dynamically computed
according to parameters specified by the user for his job, such as start and deadline time limits for
program execution. QUASAR makes an entry for the job in the batch input queue based on the
various priorities. After the job is completed, an entry is made in the output queues for the job’s
spooled output and the job’s log file.

The output spooling programs improve system throughput by allowing the output from a job to be
written temporarily on the disk for later transfer instead of being written immediately on a particular
output device. The log file and all job output are placed into one or more output queues to await
processing. When the specified device is available, the output is then processed by the appropriate
spooling program. These spooling programs may be utilized by all users of the computing system.

SYS 10,‘2-7

2.6.2.2 Use of System Features - The GALAXY-IO batch software employs many of the computing
system’s features in order to operate with maximum efficiency. Because core memory is not partitioned
between batch and time-sharing jobs, batch jobs can occupy any available area of core. Fast throueh-
put for high priority batch jobs is accomplished with the same swapping technique used for raiid
response to interactive users. When available core is not large enough for a high priority batch job, the
operating system transfers programs of lower priority to secondary memory in order to provide space
for the job. This transfer is done at the same time that the processor is operating on another job. Thus,
processing can be overlapped with swapping (and other I/O) to utilize time that would otherwise be
wasted. Batch jobs can also share programs with time-sharing and other batch jobs. Only one copy of a
sharable program need be in core to service any number of batch and time-sharing jobs at the same
time.

2.6.2.3 Flexibility - GALAXY-IO batch allows the user great flexibility. The input spooler normally
reads from the card reader, but can read from magnetic tape or disk in order to create a controi file on
a disk and to enter the job into the batch controller’s input queue. However, a job can be entered from
an interactive terminal, in which case the user bypasses the input spooler and creates a control tile on
the disk for the batch controiler. The control file contains the operating system commands and non-
resident software commands necessary to run the job. The user then enters the job into the batch
controller’s input queue by way of an operating system command string. In the command string, the
user can include switches to define the operation and set the priorities and limits on core memory and
processor time.

2.6.2.4 Job Dependency - Although jobs are entered sequentially into the batch system, they are not
necessarily run in the order that they are read because of priorities, either set by the user in an input
spooler control command or computed by the queue manager when determining the scheduling of
jobs. Occasionally, the user may wish to submit jobs that must be executed in a particular order: I
other words, the execution of one job is dependent on another. To ensure that jobs are executed in the
proper order, the user must specify an initial dependency count in a control command of the depend-
ent job. This dependency count is then part of the input queue entry. A control command in the job on
which the dependent job depends decrements the count. When the count becomes zero, the dependent
job is executed.

2.6.2.5 Error Recovery - The user can control system response to error conditions by including com-
mands to the batch controller to aid in error recovery. These commands are copied into the control file
by the input spooler. With error recovery commands, the user specifies the action to be taken when his
program contains a fatal error, as for example, to skip to the next program or to transfer to a special
user-written error handling routine. If an error occurs and the user did not include error recovery
conditions in his job, the batch controller initiates a standard dump of the user’s core area and termi-
nates the job. This core dump provides the user with the means to debug his program.

Although the batch system allows a large number of parameters to be specified, it is capable of oper-
ating with very few user-specified values. If a parameter is missing, the batch system supplies a reason-
able default value. These defaults can be modified by the individual installations.

2.6.2.6 Operator Intervention - Normal operating functions performed by the programs in the batch
system require little or no operator intervention: however, the operator can exercise a great deal of
controi if necessary. He can specify the number of system resources to be dedicated to batch processing
by limiting the number of programs and both the core and processor time for individual programs. He
can stop a job at any point. requeue it, and then change its priorities. By examining the system queues,
he can determine the status of all batch jobs. In addition, the programs in the batch system can
communicate information to the operator and record a disk log of all messages printed at the oper-
ator’s console. Xl1 operator intervention during the running of-the input
troller causes messages to be written in the user’s log file, as well as in the
analysis.

spooler’ and the batch
operator’s log file. for

con-
later

SYS10/2-8

2.6.3 Real-Time
For a system to be satisfactory for real-time operations. two important requirements must be met. The
more important requirement 1s fast response time. Because real-time devices cannot store their infor-
mation until the computing system is ready to accept it, the system would be useless for real time if the
response requirements of a real-time project could not be satisfied. The operating system must allocate
svstem resources dynamically, in order to satisfy the response and computational requirements of real-
time jobs.

The second requirement is protection. Each user of the computing system must be protected from
other users. just as the system itself is protected from all user program errors. In addition, since reai-
time systems have special real-time devices associated with jobs, the computing system must be pro-
tected from hardware faults that could cause system breakdown. Because protection is part of the
function of the operating system, the real-time software employs this feature to protect users, as well as
itself. against hardware and software failures. Inherent in the operating system is the capability of real
time, and it is through calls to the operating system that the user obtains real-time services. The
services obtained by calls within the user’s program include:

1. Locking a job in core
2. Connecting a real-time device to the priority interrupt system
3. Placing a job in a high-priority run queue
4. Initiating the execution of FORTRAN or machine language code on receipt of an interrupt
5. Disconnecting a real-time device from the priority interrupt system.

2.6.3.1 Locking Jobs - Memory space is occupied by the resident operating system and by a mix of
real-time and nonreai-time jobs. The only fixed partition is between the resident operating system and
the remainder of memory. Since a real-time job may need to be in memory to avoid losing information
when its associated real-time device interrupts, the job can request that it be locked into core. This
means that the job is not to be swapped into secondary memory and guarantees that the job is readily
available when needed. Because memory is not divided into fixed partitions, it can be utilized to a
better degree by dynamically allocating more space to real-time jobs when real-time demands are high.
As real-time demands lessen, more memory can be made available to time-sharing and batch usage.

2.6.3.2 Real-Time Devices - The real-time user can connect real-time devices to the priority interrupt
system, respond to these devices at interrupt level, remove the devices from the interrupt system,
and/or change the priority interrupt level on which these devices are assigned. There is no requirement
that these devices be connected at system generation time. The user specifies both the names of the
devices generating the interrupts and the priority levels on which the devices function. The operating
system then links the devices to the operating system.

The user can control the real-time device in one of two ways: single mode or block mode. In single
mode, the user’s interrupt program is run every time the real-time device interrupts. In block mode, the
user’s interrupt program is run after an entire block of data has been read from the real-time device.
When the interrupt occurs from the device in single mode or at the end of a block of data in block
mode, the operating system saves the current state of the machine and jumps to the user’s interrupt
routine. The user serwces his device and then returns control to the operating system to restore the
previous state of the machine and to dismiss the interrupt. Any number of real-time devices may be
placed on any available priority interrupt channel.

SYS 10/2-9

2.6.3.3 High-Priority Run Queues - The real-time user can receive faster response by placing jobs in
high-priority run queues. These queues are examined before all other run queues in the computing
system, and any runnable job in a high-priority queue is executed before jobs in other queues. In
addition, jobs in high-priority queues are not swapped to secondary memory, until all other queues
have been scanned. When jobs in a high-priority queue are to be swapped, the lowest priority job is
swapped first and the highest priority job last. The highest priority job swapped to secondary memory
is the first job to be brought into core for immediate execution. Therefore, in addition to being scanned
before all other queues for job execution, the high-priority queues are examined after all other queues
for swapping to secondary memory and before all other queues for swapping from secondary memory.

2.6.3.4 Job Communication - The DECsystem-10 operating system enables a real-time user to com-
municate with other jobs through the use of sharable data areas. This also enables a data analysis
program, for example, to read or write an area in the real-time job’s core space. Since the real-time job
associated with the data acquisition would be locked in core, the data analysis program residing on
secondary memory would become core resident only when the real-time job had filled a core buffer
with data. Operating system calls can be used to allow the data analysis program to remain dormant
on secondary memory untii a specified event occurs in the real-time job, e.g., a buffer has been filled
with data for the data analysis program to read. When the specified event occurs, the dormant pro-
gram is then activated to process the data. The core space for the real-time job’s buffer area or the
space for the dormant job does not need to be reserved at system generation time. The hardware
working in conjunction with the operating system’s core management facilities provides optimum core
usage.

SECTION 3
SYSTEM FEATURES

3.1 CE!VTRAL PROCESSORS
Within the family of 11 DECsystem-10 conftgurations, there are 3 central processor units. All operate
under the same DECsystem-10 Total Operating System (TOPS-lo), execute the same software, and
share most models of DECsystem-10 peripheral equipment. The three processors differ in their speed,
method of address mapping, memory capacity, program size, auto-diagnostic and restart features, and
priority interrupt system.

The KA 10 Central Processor is used in the DECsystem-1040, 1050, and 1055. The more powerful I(110
Central Processor is used in the DECsystem-1060, 1066, 1070, and 1077 configurations. The KLlO
Central Processor is used in the DECsystem-1080, 1088, 1090, and 1099. The KLlO Central Processor
departs from the traditional DECsystem-10 architecture in that it can be equipped with cache memory
and internal high-speed data/communication channels. Because all processors operate with the same
operating system, it is easy to lieldiupgrade a system with a KAlO and replace it with a KIlO processor
or take a system with a KI 10 and replace it with a KL 10 processor, providing a significant increase in
the computing power with no necessary changes in user programs.

The 1090 configuration differs from the 1040, 1060, or 1080 in that the high-speed data channels and
communications processor channels are integral to the central processor. Up to eight high-speed buf-
fered data channels can be utilized to support DIGITAL’s Massbus peripherals. Because the data
channels access four 36-bit words of memory in one channel request cycle, the total throughput is in
excess of one million words per second or four megabytes per second. For non-Massbus peripherals,
external channels which transfer directly to memory can be utilized. An important feature of the
integrated high-speed data channels is that cache memory is automatically updated during I/O trans-
fers. The integrated front-end processor channels will accommodate up to three PDP-11 front-end
processors in addition to the KLlO console front-end. These channels utilize high-speed microcode to
transfer and process data coming from the PDP-11 front-ends. All channel data transfers are parity
checked. Other benelits of the 1090 internal channels are configuration simplicity, improved main-
tainability, and reduced power consumption.

3.2 INSTRUCTION SET
DECsystem-10 offers up to 398 instructions, an extremely large set which provides the flexibility
required for specialized computing problems. The instruction sets of the KAlO and KIlO are hard-
wired. By contrast, the instruction set of the KLlO is microprogrammed: that is, each instruction is
actually a series of microinstructions that perform various logical functions such as processor state
control, data path control, and the actual execution of each instruction. The microcode is loaded into a
1280-by 75bit word RAM (random access memory) through the PDP-11 console front-end processor.
Since the set provides so many instructions to choose from, fewer instructions are required to perform
a given function. Assembly language programs are therefore shorter than with other computers, and
the instruction set simplifies the monitor, language processors, and utility programs. For example,
compiled programs on a DECsystem-10 are often 30 to 50 percent shorter, require less memory, and
execute faster than those of comparable computers.

sYs10/3-1

In addition to these instructions, DECsystem-IO features 64 programmable operators, 33 of which
“trap” to the monitor (monitor calls) and 31 of which trap to the user’s core area. The remaining
instructions are unimplemented and reserved for future expansion. An attempt to execute one of these
unimplemented instructions results in a trap to the monitor.

The instruction set, despite its size, is easy to learn. It is logically grouped into families of instructions
and the mnemonic code is constructed modularly (Figure 3-l). All instructions are capable of directly
addressing a full 256K (36-bit) words of memory without resorting to base registers. displacement
addressing, or indirect addressing. Instructions may, however, use indirect addressing with indexing to
any level. Most instruction classes, including floating-point, allow immediate mode addressing, where
the result of the effective address calculation is used directly as an operand in order to save storage and
execution time.

Although there are a large number of instructions, they may be broken into easily learned, logically
completed groups (Figure 3-l). To illustrate this, the group to move full words (36 bits) takes the form
shown in Figure 3-2.

To form a useful instruction, the following steps are taken:

I. The basic operator MOV is chosen. This specifies a full-word move.

7
_. One of four modifiers is chosen from the operator I group. This group specifies how the

word is to be modified while being moved.

where:
E = no modification
N = take 2’s complement
M= take magnitude
S = swap left and right halves.

3. One of four modifiers is chosen from the operator 2 group. This group specifies the location
of the word to be fetched and where it is to be placed.

thus:
(blank) = memory to accumulator

I = take 1 S-bit address as operand (immediate mode)
1M = accumulator to memory
S = memory to memory (self).

This simple example serves to show the power and flexibility built into the entire DECsystem-10
instruction set. With one broad instruction class, a total of 16 instructions has been formed.

For example:
MOVE AC, ADR = moves content of ADR to specified AC

,MOVEM AC, ADR = moves content of specified AC to ADR

LMOVEI AC, 5 = moves the number 5 to AC

MOVNM AC, ADR = moves the complemented content of AC to ADR.

SYS 1013-2

Figure 3-1 Instruction Set Constructs

SYS lOj3-3

BASIC OPERATOR - MOV

OPERATOR 1

OPERATOR 2

Figure 3-2 Move Instruction Construct

A complete specification for the DECsystem-IO instruction set is given in the Hardware Reference
Manual.

3.2.1 Full-Word Data Transmission
The full-word data transmission instructions move one or more full words of data from one place to
another. The instructions may perform minor arithmetic operations such as forming the negative (2’s
complement) or the magnitude of the word being processed.

3.2.2 Half-Word Data Transmission
The half-word data transmission instructions move a half-word and may modify the contents of the
other half of the destination location. There are 16 instructions which differ in the direction that they
move the chosen half-word and in the manner in which they modify the other half of the destination
location.

32.3 Block-Transfer Instruction
The block-transfer instruction facilitates the saving of accumulators or moving of blocks of memory
from one set of contiguous locations to another. This instruction works for any block size, and for
moving the block from any memory location to any other memory location.

3.2.4 Byte Manipulation
The t’ive byte manipulation instructions pack or unpack bytes of any length anywhere within a word.

In some systems byte manipulation refers to 6-bit or 8-bit bytes. For DECsystem-IO. byte manipu-
lation refers to bytes of any size from 0 bits to a full word (36 bits). Note that ASCII is a 7-bit code, and
on DECsystem-IO 7-bit bytes are efficiently stored 5 to a word. Ail the byte instructions utilize a byte
pointer which allows addressing of any size byte in any position in any of the 262.144 addressable
words. Further. both load and deposit byte instructions have a provision for automatic byte
incrementation.

3.2.5 Business Instruction Set
Five instructions comprise the new business instruction set implemented in the KLlO-based DECsys-
tern- 10 Central Processor. Four of these are new arithmetic instructions to add, subtract, multiply, and
divide using double precision. fixed-point operands. The new EXTEND (string) instruction is capable
of performing nine separate functions.

-

These functions include an EDIT capability; decimal-to-binary and binary-to-decimal conversion in
both offset and translated mode: Move String in both offset and translated mode: and Compare String
in both offset and translated mode. (Offset mode is byte modification by addition of the effective
address of the string instruction to the source byte string; translated mode is byte modification by
translation through a table of half-words located at the effective address of the string instruction. This
also occurs in EDIT. In addition to providing the translation function, those instructions which use
translation can control the flags in accumulators and can detect special characters in the source string).

This business instruction set provides faster processing since there are specific instructions for doing
more comprehensive string operations. These instructions can be used on a variety of code types
including ASCII, EBCDIC, etc.

3.2.6 Logic Instructions
The logic instructions provide the capabilities of shifting and rotating, as well as performing the com-
plete set of 16 Boolean functions on two variables.

3.2.7 Fixed-Point Arithmetic
Fixed-point arithmetic is handled in 2’s complement notation with 36 binary-bit accuracy (10 decimal
digits). Mode options include immediate, to accumulator, to memory, or to both with result. Three
classes of shifting include arithmetic, logical, and rotating operations to single- or double-word
accumulators.

3.2.8 Floating-Point Arithmetic
The floating-point arithmetic instructions include instructions to perform scaling, negating (form 2’s
compiement), addition, subtraction, multiplication, and division upon numbers in single- and double-
precision, floating-point format. In the single-precision, floating-point format, 1 bit is reserved for the
sign, 8 bits are used for the exponent, and 27 bits are used for the fraction. In double-precision,
floating-point format, 1 bit is used for the sign, 8 bits are used for the exponent, and 62 bits are used for
the fraction.

3.2.9 Arithmetic Operation Modes
All of the DECsystem-10 arithmetic operations - floating-point as well as fixed - and Boolean (logical)
operations have options allowing the storage location for the result of the operation to be specified in
the selected accumulator, in the addressed memory location, or in both. All may take their immediate
address as an operand.

3.2.10 Fixed/Floating Conversions
Special instructions provide the capability of converting fixed-point formats to or from floating-point
formats. Two sets of instructions are provided to perform this function: one set optimized for FOR-
TRAN and a second set optimized for ALGOL.

3.2.11 Compare and Modify
The compare and modify instruction set is large (128 instructions) and extremely flexible.

Half of these are arithmetic compare and modify instructions, which may compare two numbers or
compare the content of an accumulator or a memory word to zero, and skip or jump accordingly. It is
also possible to increment or decrement the word being tested and copy the modified word into an
accumulator, all in a single instruction. In all cases of arithmetic comparisons, any one of the eight
possible ordering relations on two variables may be specified: namely, if X and Y are the variables, X
= Y, X f Y, X > Y, X 2 Y, X < Y, X < Y, true, and false.

The remaining 64 codes are logical compare and modify instructions which allow a variety of choices
governing the way in which a bit selection mask is to be obtained, what the test condition is to be, and
what modification is to be made on the selected bits.

SYSlO/3-5

3.2.12 Program Control
Program control instructions include several types of jump instructions and the subroutine control
PUSHJ and POPJ instructions. Pushdown stacks are handled by the PUSH and POP instructions
which, through a stack pointer, process data on a “first-in-last-out” basis. Subroutine entry and return
is accomplished by jump instructions (PUSHJ and POPJ) that insert return addresses on a pushdown
stack. These instructions are vital to the efficient operation of the time-shared monitor and all of the
reentrant systems programs.

3.2.13 Input/Output
Input/output over the EBus and I/O bus is handled by eight straightforward instructions. Each
instruction may reference 1 of 126 devices. In addition to reading status, writing status, reading data,
and writing data, there are Block-In and Block-Out instructions to handle blocks of data to and from
memory and a device in an efficient manner.

3.2.14 Unimplemented User Operations (UUOs)
Many of the codes not assigned as specific instructions are executed as unimplemented user operations
wherein the word given as an instruction is trapped and must be interpreted by a routine included for
this purpose by the programmer. Those UUOs reserved for use by the monitor are called Monitor
UUOs (M UUOs), while user UUOs are called Local UUOs (LUUOs). Instructions that are iilegal in
user mode also trap in the same manner as MUUOs.

3.2.15 Trap Handling
DECsystem- 10 provides facilities for handling arithmetic overflow and underflow conditions, push-
down list overflow conditions, and page failures directly by the execution of programmed trap instruc-
tions. This trap capability avoids recourse to the program interrupt system. A trap instruction is
executed in the same address space as the instruction which caused the trap.

3.3 INSTRUCI’ION FORMAT
In all the non-input/output instructions, the nine high-order bits (O-8) specify the operation, and bits
9-12 usually address an accumulator but are sometimes used for special control purposes such as
addressing flags (Figure 3-3). The rest of the instruction word always supplies information for calcu-
lating the effective address, which is used for immediate mode data or is the actual address used to
fetch the operand or alter program flow. Bit 13 specifies the type of addressing (direct or indirect), bits
14-17 specify an index register for use in address modification (zero indicates no indexing), and the
remaining I8 bits (1 g-35) contain a memory address.

The instruction codes that are not assigned as specific instructions are performed by the processor as
so-called “unimplemented operations,” as are the codes for floating-point and byte manipulation in
any KAIO that does not have the hardware for these instructions.

An input,/output instruction is designated by three Is in bits O-2. Bits 3-9 address the input/output
device to be used in executing the instruction, and bits IO-12 specify the operation. The rest of the
word is the same as in non-input/output instructions.

3.4 NUMBER SYSTE.%l
The standard arithmetic instructions in the DECsystem-10 use 2’s complement, fixed-point conven-
tions to do binary arithmetic. In a word used as a number, bit 0 (the leftmost bit) represents the sign: 0
for positive. I for negative. In a positive number, the remaining 35 bits represent the magnitude in
ordinary binary notation. The negative of a number is obtained by taking its 2’s complement. Zero is
represented by a word containing all 0s.

SYS 1013-6

I

I
ACCUMULATOR INDEX
ADDRESS (AC I

~x~~
I

INSTRUCTION MEMORY
CODE ADDRESS

II)

x/0 I I
I I I

ADORESS

INST~~;ETIDN

“%b”E’ TYPE (@I

INSTRUCTION INOEX
CODE REGISTER

ADDRESS
(XR)

Figure 3-3 Instruction Format

3.4. I Fixed-Point Arithmetic
Two common conventions are to regard a number as an integer (binary point at the right) or as a
proper fraction (binary point at the left); in these two cases, the range of numbers represented by a
single word is -235 to 23s -1 or -1 to 1 - 2-35. Since multiplication and division make use of double-
length numbers, there are special instructions for performing these operations to yield results that can
be represented by a single word.

The format for double-length fixed-point numbers is just an extension of the single-length format. The
magnitude (or its 2’s complement) is the 70-bit string in bits l-35 of the high- and low-order words. Bit
0 of the high-order word is the sign and bit 0 of the low-order word is ignored. The range for double-
length integer and proper fractions is thus -2’O to 2’O -1 or -1 to 1 - 2-‘O.

3.4.2 Floating-Point Arithmetic
The KLlO-based DECsystem-10 has firmware for processing both single- and double-precision float-
ing-point numbers.

Included in the arithmetic instruction set are eight double-precision instructions and three
fixed/floating conversion instructions. A doubie-precision word consists of the sign, an 8-bit exponent,
and a 62-bit fraction. This gives a precision in the fraction of 1 part in 4.6 X 1O18 and an exponent of 2
to a power of from -128 to +127.

The same format is used for a single-precision number and the high-order word of a double-precision
number. A single-precision, floating-point instruction interprets bit 0 as the sign, but interprets the rest
of the word as an 8-bit exponent and a 27-bit fraction. Normalized single-precision, floating-point
numbers have a fraction which ranges in magnitude from l/2 to 1 - 2-r’. Increasing the length of a
number to two words does not significantly change the range but rather increases the precision; in any
format, the magnitude range of the normalized fraction is from l/2 to 1, decreased by the value of the
least significant bit. In all formats, the exponent range is from -128 to +127.

SYS 10/3-7

3.5 EFFEflIVE ADDRESS CALCULATION
All instructions in the DECsystem-to, without exception, calculate an effective address using bits
13-35 in exactly the same way. The steps are:

1. Obtain the number in address field Y, bits 18-35. Any one of 262,144 locations can be
specified.

2. If index lieid X, bits 14-17, is non-zero, then add the contents of the specified index register
to the number obtained in step 1.

3. Obtain the indirect bit, I, bit 13. If it is 0, the calculation is done and the result of steps 1 and
2 is the effective address. If it is 1, then go to step 4.

4. Use the address calculated by steps 1 and 2 to obtain a new word from memory, and go back
to step 1.

The effective address calculation continues until a word is encountered with a 0 in bit 13. At that point,
the result of steps 1 and 2 is taken as the effective address for the instruction.

The caiculation is carried out for all instructions, including those specifying immediate mode. As an
example, it is possible in one immediate mode instruction to load an accumulator with the address of a
particular entry within an indexed table for use as a subroutine argument.

3.6 GENERAL-PURPOSE REGISTER BLOCKS
General-purpose registers are another DECsystem-10 feature that help improve program execution.
These sets of fast integrated circuit registers can be used as accumulators, as index registers, and as the
first 16 locations in memory. Since the registers can be addressed as memory locations, they do not
require special handling instructions.

Eight sets of 16 fast registers are included. Program switching time between register stacks is 500 ns.

Different register blocks can be used for the operating system and individual users. This eliminates the
need for storing register contents when switching from user mode to executive mode. Also, a critical
real-time program is able to maintain its own register block for handling data and interrupt sequences
at maximum speed.

3.7 %lE,%lORY SYSTEM

3.7.1 Core Memory
To meet the requirements of large systems, DECsystem-IO core memory can be modularly expanded
to 4096K words for KLlO-based systems. Memory can consist of combinations in 16K, 32K. 64K.
128K. and 256K-word multiport modules. The structure of the memory bus gives the central processor
and external high-speed data channels simultaneous access to separate memory modules and allows
each to operate at its own speed.

SYS 10/3-g

Each MFlO memory module contains up to four ports and each port can be further expanded through
the use of the MXlO memory bus multiplexer. MGlO and MHlO memory modules contain up to eight
ports, reducing the need for the MXlO multiplexer. Themultiplexer handles up to eight channels,
interleaving data from the channels on a word-by-word priority basis. Such parallel operation yields
many improvements over systems which provide only a single path to memory. The memory bus
system allows each data channel to transmit full 36-bit words in parallel at a speed of one million
words per second for KLlO-based systems. Each memory module provides switches which allow that
particular module to represent any module of its size in the addressable memory space. Thus, one
module can replace another without rewiring. Switches are also provided for memory interleaving.

The memory bus architecture of the KLlO differs from both the KAlO and KIlO in that its width for
the central processor unit (CPU) is four 36-bit words. That is, the KLlO CPU actually reads/writes
four words from memory simultaneously. Combined with the effects of the cache memory, the KLlO
has therefore an effective access time of approximately 300 ns when using 1 ps memories such as the
MFIO or MGlO.

3.7.2 Cache Memory
The KLIO-based DECsystem-10 features a high-speed cache or buffer memory. Data being read from
memory is typically found in the cache 90 to 95 percent of the time, thus giving DECsystem-10 an
effective memory access time of approximately 300 ns with 1 N memories such as the MFlO, MGlO,
or MH 10. Another feature of the “state-of-the-art” design cache memory is that unlike contemporary
designs, it does not require write-through to memory. Rather, words to be written are written into the
cache memory. This eliminates, for example, the necessity of writing back into main memory each
value of an index in a loop composed of only a few instructions.

The cache is paged and words from one or more pages are written back to main memory from the
cache only when it is necessary to make room for words from new pages. A cache sweep feature allows
main memory to be updated with all or selected pages of the cache.

3.8 PROCESSOR MODES
Instructions on the KLlO are executed in one of two modes depending on the state of a mode bit.
Programs operate in either user mode or executive mode. In executive mode operations, all imple-
mented instructions are legal, addresses are not relocated, and all core locations are accessible. The
monitor operates in executive mode and is able to control all system resources and the state of the
processor. In user mode operations, addresses are relocated, certain instructions are illegal, causing
monitor traps when executed, and address references are confined within two logical program
segments.

The KLIO further divides executive and user mode operation into two submodes each. User mode is
subdivided into public and concealed submodes and executive mode into supervisor and kernel sub-
modes. For each 512-word page in the system, information is stored in a table (page map) maintained
by the operating system which specifies whether or not a page can be accessed or altered, and if it is
defined to be public or concealed. The executive and user modes subdivide on the KLlO according to
whether the active program is running in a public or concealed area.

SYS10/3-9

If a program is running in public submode, pages within the user’s addressing space are accessible only
if they are listed in the user’s page map and are defined to be accessible from public mode. Pages
designated public are, by definition, accessible. Pages designated concealed may be accessed only at
defined entry points, i.e., portals which permit entry from public submode programs. In concealed
submode operations, programs can access all of the virtual addressing space. However, if a program
running in concealed submode executes an instruction from an area designated to be public, the state
of the processor transfers over into public submode. Ordinary user programs operate in public sub-
mode. Concealed areas can be used for proprietary coding that can be executed but not altered or
examined by users operating in public mode.

The supervisor and kernel submodes are similar but not identical to the public and concealed sub-
modes. Supervisor submode programs can access but cannot alter areas designated as concealed. Also,
any instruction executed out of a public area from either supervisor or kernel submode returns the
processor to supervisor submode. In kernel submode operations, all of memory is accessible and can
be altered. Programs operating in kernel submode can address portions of memory directly, without
paging, and it is through the kernel submode program that page restrictions are established. Functions
delegated to supervisor submode generally include those affecting individual users as opposed to over-
all system management of input/output, priority interrupts, page map accounting, etc., which are
handled by kernel submode programs. The abiiity of kernel submode programs to supply information
which supervisor submode programs can read but not alter allows portions of the operating system to
be hardware-protected from other portions undergoing modifications or design changes.

3.9 PROCESS TABLES
The system maintains two types of process tables. They are termed the executive process table and the
user process table. These tables contain address mapping information (page maps) and various statur
and control information required for the process. The executive process table is built and assigned tc
the hardware processor by the TOPS-IO monitor when the system is initialized. In multiprocessor
systems, each hardware processor will be assigned its own executive process tabie. The user process
tabies are built and assigned to an individual user by the monitor when a user process is started (a user
logs in on the system). The structure of the process tables is detailed in Figures 3-4 and 3-5.

3.10 MEIMORY PROTECTION AND RELOCATION
The KL 10 provides memory address mapping from the program’s memory address space (referred to
as the effective or virtual address) to the physical memory address space by substitution of the most
significant bits (page address) of the memory address. This mapping provides access to the entire
physical memory space which is 16 times larger than the maximum user address space. The user’s
effective address space is 256K words addressed with 18-bit addresses; the physical address space is
4096K words addressed with 22-bit addresses (where 4096K is equivalent to 4.194.304 decimal; K
equals 1024).

The memory mapping process utilizes the most significant nine bits of the effective address as an index
into the appropriate page map (user or executive) in memory. The data located by the index provides
I3 bits which are appended to the least significant 9 bits of the effective address in order to form the 22-
bit physical address. Also provided are four bits which indicate what type of memory requests are
allowed to the page in question (accessible, private, writable, etc.).

If this scheme were implemented exactly as outlined above, every user memory reference would require
two actual memory references: one to obtain the memory mapping data and one to obtain the user’s
mapped memory reference. In order to reduce the number of actual memory references to nearly the
same number as required by the program, a memory mapping unit (the pager) is used in the KLIO
hardware.

SYS 10/3- 10

0

377
400

417
420
421
422
423
424
425
426
427
430
431
432
433
434
435
436
437
440

477
500
601
502
503
504
505
506
507
510

KI PAGING=l: PAGE TABLE ENTRIES FOR USER PAGES 006-777

KI PAGING+: AVAILABLE TO SOFTWARE

KI PAGINGIO: AVAILABLE TO SOFTWARE

KI PAGING=O: SECTION TABLE ENTRIES FOR USER SECTIONS 00-37

577
600 AVAILABLE TO SOFTWARE

777 I
NOTE

User LUlJO’r trap to Usw Virtual addresses 40 and
41.

10-1917

Figure 3-4 User Process Table

SYS10/3-I 1

EIGHT 4-WORD DATA CHANNEL LOGOUT LOCATIONS

STANDARD PRIORITY INTERRUPT INSTRUCTIONS

57
60 4 CHANNEL BLOCK FILL WORDS

a3
a4 RESERVED FOR FUTURE USE BY HARDWARE

137
140 FOUR B-WORD DTE20 INTERRUPT AND BYTE POINTER LOCATIONS

177
200 KI PAGlNG=l: PAGE TABLE ENTRIES FOR EXEC PAGES 400-777

KI PAGING.=& AVAILABLE TO SOFTWARE

377
400

AVAILABLE TO SOFTWARE

417
420 UNUSED
421 EXEC ARITHMETIC OVERFLOW TRAP INSTRUCTION
422 EXEC PUSHDOWN OVERFLOW TRAP INSTRUCTION
423 EXEC TRAP-3 TRAP lNSTRUCTlON

424 RESERVED FOR FUTURE USE BY HARDWARE

437

440 KI PAGING - 1 : AVAILABLE TO SOFTWARE

477
KI PAGING = 0 : SECTION TABLE FOR EXEC SECTIONS 00.37

500 RESERVED FOR FUTURE USE BY HARDWARE
507
510
511
512
513
514
515

TIME BASE HIGH-ORDER WORD
TIME BASE LOW-ORDER WORD
PERFORMANCE ANALYSIS COUNTER HIGH-ORDER WORD
PERFORMANCE ANALYSIS COUNTER LOW-ORDER WORD
INTERVAL TIMER VECTOR INTERRUPT LOCATION
RESERVED FOR FUTURE USE BY HARDWARE

S77
500 KI PAGING = 1 PAGE TABLE ENTRIES FOR EXEC PAGES 000-337

757 Kl PAGING = 0 : AVAILABLE TO SOFTWARE

760 AVAILABLE TO SOFlWARE FOR USE BY CHANNELS (OFlO, DAS33) WITH
PROGRAMMABLE LOGOUT AREA

777

NOTE
Exeasive LUUO’s trap to Executive Virtual addresses
4Oand 41.

-

lo-I918

Figure 3-5 Executive Process Table

SYS 10/3-12

If the address is in the range O-178 inclusive, the hardware fast register blocks are referenced instead of
the memory system. Otherwise, the user mode bit and the high-order nine bits of the virtual address are
compared against the contents of the pager which is part of the memory mapping hardware. These ten
bits will either match or not match with one of the entries in the pager. The user mode bit and the high-
order nine bits of the virtual address are used to do a “table look-up” in the hardware page table.

If a page table entry exists, part of the entry may be used to form the 13-bit most significant portion of
the physical memory address; the rest of the entry, the five descriptor bits, are used to check if the
reference to the page is legal.

If the memory request is consistent with the page descriptor bits, the page number part of the entry is
used as the 13 most significant bits of the physical address; and the nine least significant bits of the
virtual address are used as the least significant nine bits of the physical address.

When the relocation data for a referenced page does not exist in the hardware page table (i.e., a no-
match), the hardware reads the relocation data from the process table in core memory and stores it
into the memory ofkthe hardware page table.

The monitor assigns the core area for each user by loading the appropriate process tables, setting up
the trap locations in the process table, and responding appropriately when a trap occurs. The monitor
provides memory protection for itself and each user by filling the process tables only with those entries
which are allowed to be accessed. A zero access bit in the entry will cause a reference to the associated
page to initiate a page failure trap to the monitor.

The TOPS- 10 Operating System utilizes the KLlO page maps in the process tables to create I- or 2-
segment programs in roughly the same fashion as it uses the protection and relocation registers of the
KA 10. The major benefits of the paging capability are a smaller unit of core allocation (512 words
instead of 1024). the freedom to scatter the pages of a segment randomly through physical core (avoid-
ing core fragmentation by eliminating unusable holes in core and the overhead of repacking core), and
the opportunity to execute a program when all of its pages are not in physical core (i.e., a virtual
memory capability).

3.11 DIRECT I/O
The DECsystem-10 EBus provides a 36-bit, full-word parallel path between memory (via the EBox)
and an I/O device for purposes of control or low-speed data transfers. To initiate high-speed data
channel transfers directly between memory and a device connected to the memory bus, a control word
is first transferred over the EBus to the buffer of the high-speed device controller (RHlO, RH20, or
DXIO). Then, on command, entire data blocks are moved directly to or from memory with a single
instruction.

The EBus may also be used as a control and data path to/from a large number of low-speed I/O
devices. Transfer is performed in 36-bit words in parallel at speeds of 370K words/second. Thus each
data transmission instruction moves one word of data between memory and the buffer of the device
controller. When block input or output instructions are used, entire blocks of data are moved to or
from the device with a single instruction.

3.12 CHANNEL I/O
Channel I/O transfers are executed by the DFlO and DXlO external data channel processors or the
integral data channel processor (channel control) of the MBox storage controller.

SYS10/3-I3

3.12.1 External Data Channels
The external data channel processors transmit 36-bit data words to and from the memory system up to
the rated speed of the memories themselves. They accomplish these transfers in parallel with central
processor memory references. The channel I/O processor is activated when it receives a starting
address from a device controller. (In the case of thedisk system, this is the RHIO Massbus controller.)
It then proceeds to process a channel command list sequentially from the starting address. Four
instructions are available for creating this list. They are:

1. DATA TRANSFER - A word count in the left half of the word (18 bits) and a memory
address in the right half. This transfers the number of words specified in the word count
starting at the specified memory address.

7 _. JUMP - Zero in the left half and an address in the right half. This causes the next instruction
word to be fetched from the specified address rather than the next sequential location.

3. SKIP/FILL - A word count in the left half, zero in the right half. The data channel reads the
specified number of words from the I/O device but does not put them in memory, or writes
the specified number of words starting with memory location 1 to the I/O device.

4. HALT - A word containing all zeros halts the data channel, signals the controller, and puts
it in a state ready for initialization.

High-speed external I/O can also be multiplexed in several ways on the DECsystem-10.

1. The data channel such as the DFIO and DXlO may be accessed by up to eight devices. Once
a chain of transfers has been initialized, however, other devices must wait until completion
before they may initialize the channel.

7 _. Additional data channels may be interfaced to their own memory bus and access any or all
memories on this bus.

3. A multiplexer is available to allow multiple data channels including the DLIO commu-
nications channel to share one memory bus. This allows a true multiplex channel operation
requiring only one bus.

3.12.2 Integrated Data Channels
The integrated data channels serve as high-speed data paths between main memory and secondary
memory (disks and tapes) in a DECsystem-1090 as do the external data channels in a DECsystem-
1080. In a DECsystem-1090 up to eight integrated data channels can be implemented along with a
number of external channels. Each data channel is formed by main memory, a channel control in the
MBox storage controller, and a Massbus controller and its drives. The channels are multiplexed to
provide each implemented channel access to main memory when needed. Data is transferred to/from
memory in 4-word blocks to extend the effective memory bandwidth and to improve channel through-
put. The channels accompiish these transfers to/from memory by “stealing” memory cycles from the
cache in the storage controller. To normalize the transfer speed between the memory and the devices,
the channel control employs a 15-word buffer for each channel which will accumulate/supply the data
when needed.

-

A given channel is activated when a controller and a drive receive a read or write command from the
centrai processor. A synchronous data path is then automatically established between the drive and
memory to execute the command under the control of a channel command list which is stored in main
memory.

SYS10/3-14

3.12.2.1 Massbus Controller - The Massbus controllers are high-speed, universal mass storage con-
trollers which interface the RPO4/06 disk drives and the TU16 magnetic tape drives to the integrated
data channels in the MBox storage controller. The Massbus controllers have been designed to provide
high throughput by having the following features implemented.

1. All controllers can transfer data simultaneously since each controller is connected to the
memory system with its own built-in channel control.

7
-. While one device on a controller is transferring data, control operations such as seek or

rewind may be issued by the CPU to another device on the same controller. After the oper-
ation is completed, the CPU is notified through the interrupt system.

3. Each controller has a lookahead command register, which enables the software to preload
the next transfer request during the current transfer. Thus the next transfer can begin with
the next sector on the same device with no rotational delay.

4. When the controller has finished an operation it interrupts the central processor via a vec-
tored interrupt so the central processor does not have to poll a series of devices to determine
which device caused the interrupt.

Error checking is provided for both the channel and device data paths. The controller will terminate a
command if certain errors are detected.

The connection between the controller and its devices is called the Massbus and contains a synchro-
nous data path and an asynchronous control path. These parallel paths permit simultaneous data
transfer and control operations.

3.12.2.2 Channel Controllers - Within the MBox storage controller there is effectively one channel
control for each Massbus device controller. Each channel control has a 1%word data buffer, a com-
mand list pointer register (essentially a program counter), and a channel command word register. The
channel control transfers the data by executing a program (channel command list) which is loaded into
memory by the device service routine. The first instruction of the channel program is stored in a fixed
location of the executive process table (EPT). There are eight locations reserved in the EPT for the
initial instructions of the channel programs (initial command word), one for each channel. After being
started (by the Massbus controller), the channel control fetches the initial channel command word
from the EPT, moves it into the channel command word register, and executes the specified function.
The command list pointer register keeps track of the memory address of the channel command word.
Thereafter, the remaining instructions are fetched and executed until a halt or a last data transfer
instruction is encountered. The direction of the transfer is specified in the CPU instruction (read/write
command) that is sent to the controller and drive to initiate the transfer.

Channel instructions contain an operation code field, a memory address field, and a word count field.
Six basic instructions (operation codes) are impiemented. They are:

I. HALT
2. JUMP
3. FORWARD DATA TRANSFER
4. REVERSE DATA TRANSFER
5. FORWARD LAST DATA TRANSFER
6. REVERSE LAST DATA TRANSFER.

Each of the four data transfer instructions can be further encoded to execute a Skip/Block Fill func-
tion. This function is specified if the value in the memory address field of the instruction is zero.

SYS10/3-15

The jump instruction causes another instruction to be fetched from the location specified by the con-
tents of the address fieid. The content of the word count field is not used. This instruction is normally
placed in the EPT to serve as the initial channel command word. The content of the address field is
automatically stored in the command list pointer register.

The four data transfer instructions are used to transfer the number of words specified in the word
count field to/from memory, starting with the location specified in the address field. Each time a word
is transferred, the word count is decremented and the address is incremented or decremented depend-
ing on whether the transfer is a forward or reverse transfer, respectively. When the word count reaches
zero for a non-last data transfer instruction, the channel control fetches the next instruction from the
location pointed to by the contents of the command list pointer register. If the instruction was a last
data transfer instruction, the channel control terminates the transfer and may log out by moving two
status words to the EPT. The channel control logs out only if the read/write command that was sent to
the controller and drive specified a store operation.

System I/O programs can choose between two ways of halting, depending on which is more efficient
for the device. They may use a channel program chaining technique in which a hait instruction, which
contains the address of the next channel program, is the last command word. Alternatively, if the last
data transfer command word has the halt control bit set, the channel will halt when the word count is
decremented to 0. This is a time-saving feature since it saves a halt command memory fetch.

If a channel detects an error, it stores two channel status words in the appropriate channel locations in
the executive process table. The first status word contains bits to indicate what kind of error occurred
and the control word location pointer (CLP). The second status word contains the command word
that was being executed with the up-to-date word count and address.

3.13 PRIORITY INTERRUPT SYSTEM
The DECsystem-10 priority interrupt system is one of the most flexible available today. Devices are
assigned under program controi to any one of seven priority leveis through the dynamic loading of a 3-
bit register within the device. Each interrupt level has any number of high-speed programmable sub-
levels. Thus. a program can change the priority level of any device or disconnect the device from the
system and later reinstate it at any other level. In the same manner, a program can set, enable, or
disable any combination or all levels with a single instruction. In addition, the program can assign
some or all devices to the same level.

A set of instructions (Block-in and Block-Out) allow blocks of information, using the interrupt system,
to be transferred between a device and memory. These instructions identify the source of the interrupt,
update a word count and data address which are stored in the EPT, transmit or receive a word of
information. and dismiss the interrupt. This operation is repeated until the entire block is transferred.

The system can also generate interrupts through software. Real-time hardware can thus operate on a
high-priority level while related computations, particularly if they are lengthy, can be performed on a
lower level.

The DECsystem- 10 program-assignable priority interrupt system provides much greater flexibility
than permanently hard-wired systems. Hard-wired systems require a large number of levels, often
operate at extremely high overhead, and cannot change device priorities without system shutdown and
rewiring.

SYS10,‘3-16

An interrupt can cause the processor and the interrupting device to immediately initiate one of several
possible actions. In response to the “interrupt grant” signal from the processor, the device may supply
a 33-bit word (API function word) which is decoded as 18 bits address, 12 bits data, and 3 btts func-
tion. The processor then does one of the following:

1. Executes the instruction found at the supplied 18-bit address
2. Transfers a word into or out of the addressed location
3. Adds or subtracts 1 to the addressed location.

3.14 TRAP FACILITY
The system also provides a trapping mechanism to handle certain conditions which affect a single job.
Conditions which are detected by the trapping hardware include:

1. Address Violation
2. ‘4rithmetic Overflow
3. Pushdown Overflow
4. Illegal Instruction
5. Monitor Calls
6. Page Faults.

3.15 PROGRAMMABLE CLOCKS
The four clocks built into the KLlO provide a number of timing and counting functions including an
interval timer, a time base, an accounting meter, and a performance analysis counter.

All of the operations on these clocks are accomplished by means of I/O instructions to internal
devices. Many of these functions use a microsecond source of pulses which is counted down from the
basic machine clock of 50 MHz. The machine clock has a tolerance of 0.005 percent which will provide
less than 5 seconds drift over 25 hours.

The interval timer provides a programmable source of interrupts with a 1 ps resolution and is similar
to the DKlO real-time clock. It is used for real-time applications and for page management by the
monitor. It is designed so that a real-time deadline schedule with varying deadlines can be
implemented.

The time base provides a 60-bit ps resolution source of elapsed time. This gives over a 9140-year
maximum time before wraparound.

The accounting meters provide an accurate and reproducible measure of the amount of processor
resources used by a job, interrupts, page failures, and cache activity.

The performance analysis counter provides a tool for studying hardware and software performance of
the system. It may be used to point to hardware and/or software bottlenecks.

SYS10/3-17

3.16 CONSOLE/DIAGNOSTIC COMPUTER
One of the most signiticant features of the KL 10 is the PDP-1 l-based console/diagnostic computer.

The PDP-I 1 communicates with the KLlO through a Ten-Eleven Interface. The interface allows data
transfers between the PDP-11 and the KLlO Central Processor to take place simultaneously in both
directions. On the PDP-11 side of the interface, data has direct memory access over the PDP-11
Unibus in 8- or lbbit bytes. On the KLlO Central Processor side of the interface, data may exist in any
size byte up to 36 bits in length.

The PDP-11 serves as the console device for the KLlO Central Processor. An RP04 disk pack channel
and a TU56 DECtape channel are implemented on the PDP-11 for reading the microcode into the
KL 10s microcode memory. An LA36 DECwriter-II is included for operator/monitor communication.
The DECtape serves as the backup device.

As a diagnostic computer, the PDP-11 can examine the data paths and the control logic of the KLIO
via a separate “diagnostic bus” (part of the EBus), even if the KLlO is completeiy inoperative. Other
features of the diagnostic computer allow all data buses to be checked. Remote diagnostic checking
can also be performed via the PDP-11 computer.

The console/diagnostic computer is a state-of-the-art concept to provide the DECsystem-1080 and
DECsystem-1090 with greatly reduced mean-time-to-repair (MTTR).

3.17 SYSTEM INTEGRITY FEATURES
If system power fails, a power failure detection circuit senses the condition and causes an interrupt.
The interrupt can trigger the operation of a program which saves all valuable registers so that the
system can be restarted in a minimum amount of time.

-
On the KLlO (through the PDP-11 console computer) an automatic restart capability has been added
to resume normal operations in the event of a power outage. All three phases of ac power are mon-
itored. Low voltage on any phase will initiate a sequence of power-down operations. A program-
selectable, automatic restart capability is provided to allow resumption of operations when power
returns. Alternatively, a manual restart may be used:

Temperature sensors strategically placed within the equipment detect high temperature conditions and
cause power shutdown. This, in turn, initiates the power failure interrupt.

SYSlO/3-18

SECTION 4
THE HARDWARE

4.1 CONFIGURATIONS
The KLlO-based system is offered in two basic DECsystcm-10 configurations. They are designated
DECsystem- 1080 and DECsystem- 1090 (Figures 4- 1 and 4-2). Multiprocessor configurations are also
offered (i.e., DECsystem-1088 and 1099). The major difference between the basic configurations is that
the 1080 employs only external data and communication channels, whereas the 1090 uses both internal
and external channels.

The D ECsystem- 1080 configuration may include the following subsystems:

1.
9 _.
3.
4.
5.
6.
7.
8.
9.

Central Processor Subsystem Without internal Channel Controllers
Console Processor Subsystem
Main Memory Subsystem (external)
RHP04/06 Disk Subsystem (external DFlO channel control)
RHS04 Disk Swapping Subsystem (external DFlO channel control)
THU 16 Magnetic Tape Subsystem (external DFlO channel control)
TU70-72 Magnetic Tape Subsystem (external DXlO channel control)
Unit Record Subsystem
DC75/DC76/DN87 Communications Subsystem (external DLlO channel control).

The DECsystem- 1090 configuration may include the following subsystems:

1.
7 _.
3.
4.
5.
6.
7.
8.
9.

10.

Central Processor Subsystem with Internal Channel controllers
Console Processor Subsystem
Main Memory Subsystem (external)
RTPO4/06 Disk Subsystem (internal channel control)
TTU16 Magnetic Tape Subsystem (internal channel control)
TU70-72 Magnetic Tape Subsystem (external DXlO channel control)
Unit Record Subsystem
TU56 DECtape Subsystem
DN87S Communications Subsystem (internal DTEZO channel control)
DN87 Communications Subsystem (external DLlO channel control).

4.2 CENTRAL PROCESSOR SUBSYSTEM
The central processor subsystem of DECsystem-1080/1090 may include the following units:

1. EBox
2. MBox (with or without internal channel controllers)
3. Meter Board
4. DMA20 Memory Bus Adapter
5. DTEZO Ten-Eleven Data Interfaces (a maximum of 4)
6. RH20 Massbus Controllers (a maximum of 8)
7. DIAZO IBus Adapter Control.

SYS10/4-1

,
Figure 4-l DECsystcm- 1080 (Typical)

Block Diagram (Sheet I of 2)

SYS10/4-3

_- _I -__-._.k _..- ~~_ _____ __k

Figure 4-f DfXYsyslem-1080 (Typical)
fflock Diagram (Shcel 2 of 2)

CENTRAL PROCESSOR UNIT ,NOTE 2,

-.,..- ..,yy,”

,

i

Figure 4-2 I)ECsys1c1n-l090 (Typical)
Block Diagram (Sheet I of 2)

-

, Y.L ._ .____ ._

IO ,...

Figure 4-2 DECsystem-IO90 (Typical)
Block Diugram (Sheet 2 of 2)

SYS10/4-9

The EBox, MBox and Meter Board are designed with high-speed, non-saturating emitter-coupled logic
@CL) and are housed on the same assembly. These functional units comprise the central processing
unit (CPU). The DMAZO, DTEZO, RH20, and DIAZO are designed with high-speed TTL logic and
serve as the interface controllers to core memory, the console processor and communication front-
ends, the Massbus-compatible devices and I/O bus compatible devices, respectively (Figures 4-3 and 4-
4). An internal storage bus (SBus) serves as the control and data path between the CPU and the
DMA20 external memory bus adapter; an internal execution bus (EBus) serves as the control and data
path between the CPU and the I/O controllers (DTEZO, RH20, and DIAZO). Since both ECL and TTL
logic are employed in the central processor, logic level translators are incorporated into the CPU
assembly to convert from one logic level to the other.

4.2.1 EBox

4.2.1.1 Hardware - The EBox is the instruction execution unit of the central processor. Essentially,
the instruction execution unit consists of the following logic:

::
Memory Request Logic
72-bit Arithmetic Logic

3. 23-bit Address Logic
4. IO-bit Arithmetic Logic
5. Eight General Register Blocks
6. EBus Control Logic
7. Microprogrammed Instruction Dispatch and Control Store.

In addition, the EBox contains the master clock, meters, a processor status register, and the diagnostic
control logic.

All operations in the KLlO-based DECsystem-10 are synchronized to the master clock which runs at
50 MHz in the model A CPU and 58 MHz in the model B CPU. The master clock can be started,
stopped, single-stepped, and otherwise controlled by the console processor (privileged front-end) via
the diagnostic controi logic. This logic is distributed between the EBox and the DTEZO. Besides being
able to control the master clock, the diagnostic control logic provides a means for monitoring proces-
sor status and diagnostic registers in both the EBox and the MBox. The master clock of a model A
CPU is divided down to supply a 25 MHz clock to the MBox, a slower variable clock for the EBox
control store, and an 6.25 MHz clock to the EBus and SBus.

The program counter (PC), virtual memory address adder (VMA AD), virtual memory address regis-
ter (VMA), and the arithmetic adder (AD) form the basic address manipulation path in the EBox. This
path is 23 bits wide to accommodate a virtual address space of 8 million words. Only 18 bits of the
virtual address are implemented for DECsystem-1080 and 1090 to provide a virtual address space of
256,000 words. During the course of calculating the effective address for an instruction. AD will
contain the value of memory address Y, Y+XR, Y@, or (Y+XR)@ and pass it to the VMA. The
source for Y. XR, and @ are specified by the corresponding fields of the instruction. The VMA can
also receive PC + 1 and PC +2 via the VMA AD. This is normally done for main line instruction fetches
or for skip type instructions.

The arithmetic register (AR) and arithmetic register extension (ARX), the buffer register (BR) and
buffer register extension (BRX), and the adder (AD) and adder extension (ADX) form a 72-bit data
path for manipulating data. This data path is implemented in such a way that half words, full words
and double words can be manipulated easily. The AD and ADX are implemented with arithmetic logic
units (ALU) which are capable of performing 16 arithmetic and 16 logic operations. Words fetched
from memory mav be moved into the AR, ARX, and IR. Typically, data (operands) is placed in the
AR while instructions are moved to the ARX and IR. Words to be moved to memory are placed in the
AR when a memory request is made. Data transfers to and from the EBus are made via the AD and
AR respectively.

sYslo/4-1o

DATA

: IF- !i
cc?4rRDC

0
*ODRt,S ___--

MEMORY BUS ADAPIEA DMA:

DATA -

PLI. _--

ERROR __

DA,. -

BUS
OWRO -

WA _--

E”mm

CONTROL _

Figure 4-J DECsystem-IORO Central Processor
Suhsys~em lilock Diagram (Sheet I ol 3)

SYSIO/4-II’

I

l-i

I

T
I iI -

, OAT DIS

DS O-S/STATUS

DIAG STROBE

REMOVE
DS STATUS

, 36-K DATA

BUSCONTROL

PI o-7

.
c

DIAGNOSTIC
. CONTROL

7

E DATA
B- BUFFER I i6-BIT DATA

:
(RAM)

i- f

1 1

t ADDRESS

I 4
STATUS AND
INTR CONTROL

DTEZO TEN - ELEVEN INTERFACE

36-B!T DATA DATA BUF
. AND .

36 -BIT DATA

(0 TO +3V) BUS CONV (0 TD -3Vl

)

I

:,
BUS CONTROL CONTROL BUS

. AND
CONTROL rB

BUS CONV
:

A b

PI l-7 ! 1
-

BUS -
PI l-7

CONV IOS 03-09 *

I

DIAPO IBUS ADAPTER

7

J V
IO-2692

Figure 4-3 DECsystem- 1080 Central Processor
Subsystem Block Diagram (Sheet 3 of 3)

SYSI o/4-1 5

r.--- --- t--
L.L

L-z,

-

-
_ .
-_;
_::

_.
_

_.

-.

CLO‘”
__-

O6.G LY WY,

Figure 4-4 DECsystem-1090 Central Processor
Subsystem Block Diagram (Sheet I of 3)

SYS 10/4- I7

-

FRONT-END

I I I
DO0 -35
DATA DIS DATA 00-35

t

Figure 4-4 DECsystem- 1090 Central Processor
Subsystem Block Diagram (Sheet 3 of 3)

SYSI obi-21

The shift count adder (SCAD), floating exponent register (FE) and shift count register (SC) form the
IO-bit arithmetic logic which is used in performing shift operations and operations on byte pointers
and floating-point exponents.

The shifter (SH) is used in performing shift, rotate, and byte pointer operations. The shifter is also used
in aligning a particular field of a word (such as the API function word) for dispatching into the control
store as a function of the contents of that field.

The multiplier quotient register (MQ) is primarily used in performing floating-point and double-preci-
sion integer arithmetic operations. The MQ is also used as a temporary storage register for saving the
API function word.

Each of the eight general register blocks (AC blocks O-7) consist of a set of 16 general-purpose, high-
speed registers. Blocks 0 and 7 are permanently assigned to the monitor and the microcode, respective-
ly. From the remaining blocks two can be assigned under program control (DATA0 PAG) to the user
as the current and previous context AC blocks.

The monitor uses its assigned AC block in the same way as the user program uses its current context
AC block.

The microcode uses the assigned AC block when executing complex instruction algorithms.

The current context AC block is used by the user program for indexing, for general storage as specified
by the AC field of the instruction and/or by the effective virtual address (locations O-17), and for
instruction execution if desired.

The previous context AC block is used by the monitor to allow the monitor to reference the previous
user’s address space to pass arguments, data, or status information between the previous user’s pro-
gram and the monitor. This is normally done when the user program executes a monitor call for some
type of service.

The instruction register (IR), dispatch RAM (DRAM), and control RAM (CRAM) form the instruc-
tion dispatch. control, and execution logic. Essentially, the IR holds the instruction operation code
(000-777) which is used to address the DRAM. The DRAM contains a dispatch address into the
CRAM and the CRAM contains the microcode for executing the instruction. Along with the dispatch
address, the DRAM also contains control bits for initiating an operand fetch, instruction prefetch, and
for ultimately initiating the store operation. The dispatch address and associated control bits in the
DRAM vary in accordance with the requirements of the dispatching instruction. The contents of both
the DRAM and the CRAM are the assembled and formatted object code of the KLIO microprogram
(Subsection 4.2.1.2).

SYS10/4-22

When an instruction is fetched from memory it is normally placed into the ARX and the IR. The
microcode detects that an instruction has been received; if no traps, interrupts, or errors are sensed, the
microcode will begin calculating the effective address. If indexing is specified by the instruction, the
microprogram will access the assigned general register block at the location addressed by ARX bits
14-17 (the XR field). The initial address portion of the instruction word in ARX is the Y field con-
sisting of bits 18-35 of ARX. This is added to the contents of the addressed general register and the
result will enter VMA and AR. The effective address calculation continues; if the instruction specifies
indirect addressing [ARX bit 13 (l)], a memory cycle is required. The fast memory is addressed by
VMA bits 32-35 if VMA bits 18-31 = 0. If this is the case then the indirect reference will access fast
memory. If the indirect reference is not to fast memory, the microprogram generates a request via the
memory request logic, which performs all the handshaking. When the word is available it is passed via
the MBox cache data lines and enters the AR and ARX. The KLlO CPU is capable of multilevel
indirect addressing and indexing may be specified at each level. The process continues until the indirect
bit in a word entering ARX is zero. At this point, only one level of indexing is possible and having
completed this operation the VMA and AR will contain the effective address (E).

After computing the effective address the microprogram uses the op code of the instruction in IR to
address the dispatch RAM. The word fetched from the dispatch RAM is loaded into a register (dis-
patch register) where it will be available while the instruction is processed. The dispatch register word
contains the equivalent of a FETCH field, a STORE field, and an ADDRESS field which points to the
location in the microprogram where the execution portion of the cycle for the instruction begins. The
FETCH and STORE fields are sampled by the microprogram at the appropriate time to initiate fetch
and store operations where required. The microprogram consists of many microinstructions, each of
which is composed of discrete fields. Some of these fields control the data path; others control the
microprogram branching mechanism; still others control the clock, etc.

If an operand is to be fetched or if a write operation is to he performed, the address is page-checked
after the effective address has been calculated. After issuing the appropriate request, the microprogram
diverts to a point where it will wait for the operand to be loaded into AR if an operand was to be
fetched or it will wait for the page-check to be verified. When. this phase is completed, the micro-
program uses the address portion of the dispatch word to enter the microprogram at a point which will
begin the execution of the particular instruction.

Once the execution portion of the cycle is entered, the branching mechanism is controlled dynamically
by conditions dictated by the particular instruction. Some instructions cause a prefetch of the next
instruction in the sequence; others do not; and some instructions such as jumps cause instruction
fetches by their very nature. The last portion of the microprogramcycle implements the storage of
those operands developed during the execute portion of the cycle. Remember that a write paging check
was made previously and it is only necessary, at this point, to pass the data to the MBox via the E/M
interface. The writing is done via the AR register together with the correct rquest qualifier signals.
This having been done, the microprogram branches back to a point where it will begin the effective
address calculation for the next instruction.

SYS10/4-23

In general, an EBox request for memory requires that the EBox set up the correct effective virtual
address in the VMA, set up the data path for accepting or supplying the word, and set up the appropri-
ate request qualifiers. Most memory requests are initiated by a 4-bit field (MEM field) in the micro-
instruction. This field may be used alone or in conjunction with the DRAM FETCH or STORE fields.
The contents of these fields control the operation of the memory request logic to initiate and execute
the following types of request:

::
Fetch Instruction
Fetch Indirect Address

3. Fetch Operands
4. Store Results.

Besides these basic memory operations, the memory request logic can also initiate a request to write-
check a page, map the virtual address, load and read internal MBox registers, etc.

The EBus control logic consists of two sections. One section handles programmed I/O operations; the
other handles priority interrupt (PI) I/O operations. To facilitate the transfer of control and data
between the EBox and a specific controller, each controller on the EBus is permanently assigned a
device code and a physical number. In addition, each controller can aiso be assigned to a priority
channel under program control.

The section of the EBus control logic that handles programmed I/O operations is controlled by a field
(SKIP/COND-EBUS CTRL) in the microinstruction to which the instruction dispatched. Specific
patterns in this field in conjunction with another field in the microinstruction cause the EBus dialogue
sequence for transferring control, status, or data between the EBox and the desired controller (or
internal device) to be executed. Bits 03-09 of the IR (I/O instruction device code field) are used to
select the controller and IR bits 10-12 (I/O instruction function code) specifies the type of I/O oper-
ation (CONO, CONI, DATAO, DATAI, etc.) to be executed. If the fetched I/O instruction specifies
output operation to the device (CONO, DATAO, CONSO, BLKO), then the EBox issues a memory
request to fetch the operand before executing the EBus dialogue. If, however, the instruction specifies
an input operation from the device (CONI, DATAI, CONSI, BLKI), the EBus dialogue is executed to
fetch the word first, and after the word is received by the EBox, a store operation is initiated by the
EBox.

The section of the EBus control logic that handles priority interrupt I/O operations (PI control) runs
concurrently with the instruction execution logic to fetch t.he API function word in response to a PI
request (PIO-7) from the controller on the EBus. After the API function word is received, an interrupt
request is issued by the Pi control to dispatch to the execution microcode as a function of the API
word. Included in the interrupt control are several control and status registers (PI) that can be loaded
and read using the standard I/O instructions. These registers are, therefore, considered to make up an
internal processor device. The purpose of these registers is to control and maintain the current status of
the PI system.

Besides the PI internal device for controlling and maintaining the status of the PI system, the EBox
also contains an arithmetic processor status register (APR) and a set of meter/timer registers (MTR
and TIM). These registers are also considered to be internal processor devices. Standard I/O instruc-
tions are used to access these devices for setting up control functions, for monitoring status, and for
transferring data.

SYS 1014-24

4.2.1.2 Firmware - The heart of the EBox is a high-speed, 1280-word control random access memory
(CRAM). This memory is initialized to contain the microcode. The microcode is loaded into the EBox
by the console processor from the RPO4 disk subsystem or the TCll-G DECtape subsystem. These
devices are used for booting, diagnosing, and dumping functions. The console processor-based TC 1 l-
G DECtape subsystem is not supported as a system device. The microcode includes the following
functional process elements:

1. Startup and Stop Interface
2. Effective Address Manager
3. Data Fetch Manager
4. Executor
5. Data Storage Manager
6. Priority Interrupt Handler
7. Page Fault Handler
8. Halt Handler
9. Input/Output Handler.

Each word of the microcode in the CRAM contains up to 75 bits of actual control information in an
&bit field (Figure 4-5). Initial entry into the microcode for a given instruction is a function of the
instruction op code via the dispatch RAM (DRAM). Thereafter, the microcode sequences as a func-
tion of the J dispatch address field of the microinstruction word.

The start-up and stop interface evaluates initial hardware conditions and dispatches to the appropriate
handler. The nature of the condition could be a pending priority interrupt, a halt condition, etc. Upon
completion, all instructions must pass through this process.

The effective address manager evaluates indirect address flag bit 13, index field bits 14-17 in the
arithmetic register extension (which contains the current instruction), together with certain hardware
conditions such as PIs or page failures. It either dispatches to the appropriate handler or calculates the
effective address by requesting the n,ecessary fast memory (index) cycles or MBox indirect (8) cycles.

The data fetch manager evaluates the 3-bit A (FETCH) field (for the current instruction), which is in
the dispatch table. The code in the 3-bit field defines the type of data fetch or write or combination
operation (if any) required. The data fetch manager takes the proper action required, i.e., enabling the
EBox clock to stop, as appropriate, or dispatching directly to the executor, or initiating an instruction
prefetch. Note the instruction register is used to address the proper location in the dispatch table
(DRAM) based upon the op code for the instruction.

The executor routine is the bulk of the microprogram. It contains a number of somewhat autonomous
routines which are used to execute the instruction specific function, e.g., move a half word from one
register to another, push a word onto a subroutine stack, and so on.

The data storage manager dispatches on the DRAM B field. In addition, when called from the execu-
tor as a subroutine only, e.g., MEM/WRITE, the data storage manager defines the appropriate MBox
control signals and dialogue and -initiates the write operation. When the data storage manager is
entered in the context of a store cycle, that control generally passes to that process from the executor.
Then, finally, control will pass to the start-up and stop interface.

SY S 1014-25

LNSTRUCTlON

DISPATCH RAM

Figure 4-5 Instruction, Dispatch,
and Control Formats

SYS 10/4-26

The priority interrupt handler is entered from discrete points in the microprogram. Interrupt is granted
while computing the effective address and during certain longer instructions, such as BLT.

Control is passed to the page fault handler from the effective address manager or data storage manager
when the MBox asserts PF HOLD prior to MBOX RESP during a memory request. The implication is
that a memory address violation (page failure) occurred, i.e., an access failure, write protection viola-
tion, or some similar violation. In addition, this handler is used for certain error conditions.

The halt handler routine is entered from the start-up and stop interface when the RUN flip-flop is
found clear at next instruction dispatch time. The RUN flip-flop can be cleared by various mecha-
nisms. For example, when a halt instruction is executed, RUN is disabled. On power-up, RUN must
be set by a diagnostic function initiated from the DTEZO.

The input/output handler is dispatched to via IR dispatch from the dispatch table on DATA0 and
CON0 instructions after the data or status has already been fetched from memory, or directly on
DATAI, CONI, CONSO, or CONSZ instructions. The handler calls the EBus driver which generates
the necessary EBus dialogue with the device. For BLKI or BLKO instructions, the pointer word must
be fetched from the EPT, updated, and stored back at E before the required word is fetched. This is
performed by the input/output handler first. When the data has been fetched, the EBus driver is called.
On DATAI and CONI instructions, the EBus driver is called to negotiate the transfer from the selected
device over the EBus to the EBox. Then the input/output handler passes control to the data storage
manager which issues a request to store the data. l

4.22 MBox
The MBox is the storage controller of the KLIO-based DECsystem-10. The MBox contains a pager, a
physical memory address selector (PMA), a Csegment data cache, and four memory buffer (MB)
registers. These functional elements provide the EBox instruction execution unit access to physical
memory. The physical memory address is formed by the pager and the PMA while the data path
between main memory and the EBox is created via the MBs and the data cache.

The MBox also contains an integral data channel I/O processor (a multiplexed channel controller).
This I/O processor interfaces with the MBs to form a data path from the physical memory storage bus
(SBus) to the channel bus (CBus). The CBus is multiplexed by the channel I/O processor to orderly
select up to eight Massbus controllers (channels). The channel I/O processor interacts with the data
cache to maintain the integrity of the flow of data between physical memory and mass storage.

The pager is a high-speed, 512-word, set-associative automatic buffer memory where physical page
addresses and page descriptor keys are stored. It serves as a high-speed extension of the page table
portions of the user and executive process tables. When the EBox issues a request for paged memory,
the MBox automatically checks the contents of the pager to see if it contains a valid physical page
address. If there is a valid address it simply concatenates the entry with the low order nine bits of the
virtual address (LINE NO.). This address is then used to look in the cache and, if necessary, issue a
core request. If the pager does not contain a valid physical page address, the MBox automatically
issues a core read cycle to refill the hardware page table from the user or executive process table. Since
four words are typically fetched at a time and since the process table contains two physical page
address entries per word, eight page table entries will be fetched and moved to the pager at a time.
Consequently, a page refill cycle will be required only when the program addresses pass through the
boundary of every eighth page.

SYS 10/4-27

The cache is a high-speed, 2048-word, set-associative automatic data buffer memory where instruc-
tions and operands are stored and maintained as the EBox issues requests for memory. It serves as a
high-speed extension of core memory. When the EBox issues a memory request, the MBox fetches a 4-
word block (quadword) from core, transfers the requested word to the EBox, and stores the words in
the cache (refills the cache). Once instructions and operands have been moved from core to the cache,
the EBox can fetch instructions much faster via the cache on subsequent references since a time-
consuming core cycle will not have to be executed. Fetching 4-word blocks instead of single words
from memory (and, due to the principle that the program may need the next sequential word or words
in the program) results in what is referred to as “lookahead.” Another characteristic of programs is to
execute the same instructions many times as in iterative loops. In this situation the cache is particularly
effective because once the instructions and data are resident in the cache, further references to core will
not be required in executing the code composing the loop.

For write operations, the MBox writes the word directly into the cache instead of core. Write oper-
ations to core are initiated only when core needs to be updated. This feature has the effect of con-
serving core cycles while a user program is running.

The channel I/O processor is a multiplexed channel controller that can handle up to eight simultane-
ous. high-speed block transfers without program intervention. Up to eight internal channels can be
implemented on a KL lo-based DECsystem- 10. After being started by a Massbus controller, the chan-
nel I/O processor executes the block transfer under the control of a channel command list which is
stored in physical memory. The channel I/O processor employs a set of RAMS for storing control and
status bits. for maintaining the channel command list pointer and the channel command word, and for
buffering the data.

For both CTOM and NOT CROM operations, the channel controller will transfer blocks of four
words to/from memory via the four MBs. The CBus transfers the data to/from the appropriate Mass-
bus controller at a time.

4.23 Meter Board
This board contains the following programmable clocks, each of which provides a different riming or
counting function.

1. Interval Timer
1 A. Time Base
3. Accounting Meters
4. Performance Anaiysis Counter

This board employs ECL logic and is, therefore, housed on the ECL CPU assembly along with the
EBox and the IMBOX. The clocks are considered to be internal processor I/O devices (TIM and MTR)
and are programmable using the standard I/O instruction set.

The interval timer provides a programmable source of interrupts having 10 ps resolution and a choice
of 2” - 1 possible time intervals ranging from 10 ~LS to 40.95 ms.

The readable time base is a long-term clock for measuring elapsed time with 1 ps resolution. (Long-
term power line frequency time base is provided by the console processor.) It uses a 1.0 IMHZ (*0.005
percent) frequency source, derived and down-counted from the basic 50 MHz machine clock. The time
base has less than 5 seconds of drift over a 24-hour period.

The accounting meters consist of an EBox busy meter, which counts when the EBox is executing
microcode. and a memory cycle meter, which counts the number of EBox memory references. The two
meters provide a reproducible measure of the processor resources used by a program and they can be
used for billing users and for benchmark or comparison purposes.

SYS lO/4-28

The performance analysis counter serves as a tool for testing and evaluating the KLIO-based systems.
It monitors either the duration or the rate of occurrence of several hardware signals from various parts
of the main processor. The signals, chosen for their usefulness in evaluating system performance,
define machine states and conditions not easily measured by software techniques. The signals to be
monitored are selected by means of a Booiean expression loaded by the program.

4.2.4 E/M Interface
The interface between the EBox and the MBox is essentially asynchronous in terms of the
request/response dialogue. However, the two units run synchronously in step with the same master
clock (50 or 58 MHz). The EBox runs at a variable clock rate that is governed by the time field of the
microcoded instruction word and the response time of memory (MBox) and/or the I/O device; and the
MBox runs at 25 or 29 MHz. The response time between EBox request and MBox response varies with
the type of request made and whether a memory cycle is required. The EBox declares the type of
request by asserting a specific set of request qualifiers.

4.2.5 SBus and External Memory
The SBus is used to connect the MBox to the external core memory subsystem via the DMAZO memo-
ry bus adapter. In the 1080 and 1090 systems, the core memory subsystem may include a mixture of the
following types of memory modules:

1. MFIO Memory
3 _. MGIO Memory
3. MH 10 Memory.

The MFIO memory is a 4-port memory and the MGlO and MHlO memories are 8-port memories.
When mixing these memories, configurations are limited to those that can be implemented on the
MFlO. Besides having eight ports, the MGlO has twice and the MHlO has four times as much memory
capacity in the same space as the MFIO memory. All three memories must be manually configured
(setting up appropriate address switches) to complement the desired interleaving mode. In addition,
the DMA must be configured by the system initializing software to operate in l-bus, 2-bus, or 4-bus
mode to complement the designed interleaving mode (Table 4-l). To set up the DMA, the system
initializing software executes a series of SBDIAG (BLKI PI) instructions.

Table 4-l
Interleaving Configurations

interleaving I DMA Bus Mode

:
4

The following paragraphs summarize how read, write, and read-pause-write operations are performed
over the SBus.

4.2.5.1 Read Operations - Read operations are initiated by the MBox to refill the pager, refill the
cache. fetch the words the internal channel control requested, and fetch the word the EBox requested.
To start a read operation, the MBox forms and places the physical memory address (PMA) on the
SBus ADDRESS lines, specifies the number of words needed (1,2,3, or 4) by asserting the appropriate
SBus RQ lines, specifies the type of cycle by asserting the SBus RD line, and asserts SBus START.

SYS 10/4-29

After decoding the incoming SBus request. the DMA enables the appropriate KBus(es), issues a mem-
ory cycle request. and presents the memory address to those modules that are connected to the enabled
KBus(es). If the addressed storage module is not busy, it reads the address into its address buffer and
responds with an ACKNOWLEDGE signal. The ACKNOWLEDGE signal is gated through the
DMA to the MBox to indicate the acceptance of the memory request.

NOTE
A storage module is busy if it is being accessed
through another port.

The DMA then controls the core read cycle to transfer the data between core memory and the MBox
and to restore the addressed memory location as follows:

I. During the read portion of the core read cycle, the memory module reads the data and its
parity from the addressed location and places it into the memory data buffer. Then the data
along with its parity, is transferred to the associated data buffer in the DMA. Providing that
an ACKNOWLEDGE signal was received, the associated DMA data buffer is enabled,
causing the data to be parity checked and then transferred from the buffer to the associated
MBox MB via the SBus DATA lines. A memory-generated restart signal which is gated
through the DMA to the MBox (DATA VALID) indicates that the requested data has been
transferred and can be placed into the appropriate MB.

2. During the restore portion of the core read cycle, the storage module is disconnected from
the KBus to write the data and parity held in the memory data buffer back into the
addressed core location.

4.2.5.2 Write Operations - Write operations are initiated by the MBox to write-back written words
from the cache, store a word in response to a specific EBox request. and store words in response to an
internal channel control request. To start a write operation, the MBox forms and places the physical
memory address (PMA) on the SBus ADDRESS lines, places the data to be written into the MBs
whose outputs are connected to the SBus DATA lines, specifies the number of words to be written (1,
2. 3. or 4) by asserting the appropriate SBus RQ lines, speciftes the type of cycle by asserting the SBus
WR line. and asserts SBus START.

The DMA then responds to the incoming request as described for the read operation. If the memory is
not busy the DMA continues the operation by controlling the core read cycle to clear the addressed
location(s) and to transfer the data from the MBox MBs to core memory as follows:

1. During the clear portion of the core write cycle, the memory module reads the data and its
parity from the addressed location and dtscards it. This operation clears the memory
location.

7 _. During the write portion of the core write cycle, the DMA places the data and parity that is
held on the SBus DATA lines into the associated DMA data buffer, checks parity and then
gates the data and parity to the memory module via the selected KBus. The memory module
completes the cycle by writing the data and parity into the addressed core location.

4.2.5.3 Read-Pause-Write Operation - Read-pause-write operations are initiated by the MBox pro-
viding this operation is specified by the EBox and the cache is not to be used (refer to MBox Unit
Description). Normally this type of memory operation is requested by the EBox only to interlock data
bases of multiple processor systems. To start a read-pause-write operation. the MBox forms and places
the physical memory address (PMA) on the SBus ADDRESS lines, specifies the word to be transferred
by asserting the appropriate SBus RQ line, specifies the type of core cycle by asserting both the SBus
RD and WR lines. and asserts SBus START.

SYS10/4-30

The DMA. in cooperation with the addressed memory module, then responds by transferring the data
and its paritv bit from the addressed memorv location to the MBox. The MBox, in turn, transfers the
data along with its parity bit to the EBox, which then operates on the data to modify it. After the data
is modified. the data is returned to the core memory module via the MBox. SBus. and the DMA where
it is then written into the same memory location. The core memory module, the DMA and the MBox
will all remain busy for the duration of this operation, preventing access to the memory module. As
described for both read and write operations previously, parity is checked by the DMA in both
directions.

4.2.6 DMAZO
The DMAZO memory bus adapter adapts the KLlO storage bus (SBus) to the external memory bus
structure. Besides serving the bus adapting function, the DMA20 also splits the SBus into four sepa-
rate buses (KBus &3) to facilitate 4-word transfers and 4-way interleaving of storage modules thereby
speeding up memory transfers. The bus adapter contains the bus control logic, an address buffer
register, and four data buffer registers.

The DMAZO is capable of operating in one of three modes. The modes are l-bus, 2-bus, and 4-bus and
are directly associated with the type of interleaving to be used. The desired mode is selected by execu-
ting an SBus diagnostic cycle (BLKI PI) when the system is initialized during the bootstrapping oper-
ation. Besides executing the SBus diagnostic cycle, the memory modules connected to the memory
buses (KBus O-3) must be manually set up to exhibit the correct physical memory address and inter-
leave mode.

4.2.7 EBus
The EBus is used to connect all KLlO I/O controllers in parallel with the EBus control logic and
priority interrupt control logic of the EBox. In the 1080 and 1090 systems, three types of controllers
can be connected to the EBus; they are:

1. DTEZO Ten-Eleven Data Interface
1 _. DIA20 IBus Adapter Control
3. RH20 Massbus Controller.

The DTElO is the link between the central processor and the PDP-11 console or front-end processor. It
is designed to facilitate implementation of the following console and communication functions:

1. Deposit into memory

7 _. Examine memory

3. DMA type byte transfer operations between KLlO and PDP-11 memory

4. Interprocessor interrupt. facility (doorbell)

5. Diagnostic operations for obtaining processor status and diagnostic information and for
controlling the processor from the console.

Up to four DTE2Os can be connected to the EBus. Only the privileged DTEZO which interfaces to the
console front-end is permitted to exercise the diagnostic functions.

The RH20 provides a programmable data link between the MBox channel controller and the second-
ary storage subsystem (mass storage drives). Its functions include:

I. Execute non-data transfer commands for setting up a mass storage drive in preparation for a
data transfer operation.

SYS10/4-31

1
i. Execute data transfer commands to transfer data over the Massbus and CBus in cooperation

with the channel control logic of the MBox.

Up to eight RHZO controllers can be connected to the EBus.

The DIA20 is used in the 1080- and 1090-based KLlO processor to communicate with all I/O bus type
peripheral controllers and devices. Its main functions are to adapt the EBus to the I/O bus and levei
conversion. Only one DIA20 can be connected to the EBus.

The backplane in which the controllers are housed are hardwired in such a way that each controller is
associated with its own physical number causing the controllers to be module-slot dependent. The
RH20s are assigned phvsical numbers O-7; the DTE2Os are assigned physical numbers 8-l 1; and the
DlA20 is assigned phy&al number 15. This scheme facilitates replacement without having to require
the physical number on the controller.

The DTEZOs and RH20s are also each assigned a unique device code for addressing purposes in the
same way that device codes are assigned to the I/O bus type controllers. The device code is hardwired
on the backpanel just like the physical number.

NOTE
The DIA20 is not assigned a device code but is
assigned a physical number.

The following paragraphs summarize how output, input and interrupt operations are performed over
the EBus.

4.2.7.1 Output Operations - Output operations via the EBus are executed by the DATA0 and CON0
instructions. In addition to a unique operation code reflecting the operation to be performed, the
instructions specify the destination device code and the source memory location of the data to be
transferred.

NOTE
The BLKO instruction causes a DATA0 operation
to be executed after the word pointer is updated. The
pointer is used as the source address for the data to
be transferred.

The EBox places the device code on the EBus CONTROLLER SELECT lines, the data to be trans-
ferred on the EBus DATA lines, the operation code on the EBus FUNCTION lines, and asserts
DEMAND.

All controllers except the DIA20 compare the code on the EBus CONTROLLER SELECT lines with
the hardwired device code when they detect the leading edge of EBus DEMAND. If a true comparison
results in a controller. that controller asserts EBus ACKNOWLEDGE. At the same time, the
addressed controller decodes the code on the EBus FUNCTION lines (DATAO/CONO) and strobes
the data on the EBus DATA lines into the appropriate register. After the data is strobed into the
register the controller asserts EBus TRANSFER.

SYS 1014-32

Because the DIAZO does not have an assigned device code and has no way of knowing what devices
and device codes are implemented on the I/O bus, it does not perform the device code comparison but
simply simulates the I/O bus dialogue if a DTE20 or an RH20 controller does not recognize the device
code. The DIAZO will:

1. Simulate the I/O bus timing and control dialogue if an ACKNOWLEDGE signal is not
generated by a controller after detecting the leading edge of DEMAND; when the output
operation to the selected controller on the I/O bus is done the DIA asserts EBus TRANS-
FER. However, ACKNOWLEDGE is not asserted by the DIAZO.

7 _. Remains idle if a controller asserts ACKNOWLEDGE after the DIAZO detects the leading
edge of DEMAND.

The EBox clears DEMAND to terminate the output operation when one of the following conditions
occur:

I. The EBox receives TRANSFER.

2. The EBox does not receive TRANSFER within a specific period of time after it asserts
DEMAND. This condition implies an error condition in that the device code was not recog-
nized by a controller and the DIA20 also did not respond.

4.2.7.2 input Operations - Input operations via the EBus are executed by the DATA1 and CON1
instructions. In addition to a unique operation code reflecting the operation to be performed, the
instructions specify the source device code and the destination memory location of the data to be
transferred.

NOTE
The BLKI instruction causes a DATA1 operation to
be executed after the word pointer is updated. The
word pointer is used as the destination address for
the data to be transferred. The CONS0 and
CONSZ instructions cause a CON1 operation to be
executed. A test (for a one) is then made on the input
data to determine whether the skip condition is
satisfied.

The EBox places the device code on the EBus CONTROLLER SELECT lines, the operation code on
the EBus FUNCTION lines, and asserts DEMAND.

Ail controllers, except the DIA20. compare the code on the EBus CONTROLLER SELECT lines with
the hardwired device code when they detect the leading edge of EBus DEMAND. If a true comparison
results. the addressed controller asserts EBus ACKNOWLEDGE. The controller then places the
selected data on the EBus DATA lines and asserts EBus TRANSFER.

SYS10/4-33

The DIA20 simulates the I/O bus dialogue to get the data from the selected controller if the DTEZO or
an RH20 controller does not respond by asserting EBus ACKNOWLEDGE. This is done for the same
reasons given in the description for output operations (Subsection 4.2.7.1). When the data is received
from the selected controller the DIAZO places the data on the EBus DATA lines and asserts EBus
TRANSFER.

The EBox strobes the data on the EBus DATA lines into the AR and clears EBus DEMAND after it
senses the leading edge of TRANSFER, provided that TRANSFER is detected within a specific peri-
od of time after DEMAND is asserted. If the EBus does not receive TRANSFER within a specific
period of time after it asserts DEMAND, it clears DEMAND also. This condition implies an error
condition in that the device code was not recognized by a controller and the DIAZO did not respond.

4.2.7.3 Programmable Interrupt (PIl-7) Operation - Part of the control information sent from the
EBox to a controller during system initialization is a 3-bit interrupt channel number. When the condi-
tions for initiating an interrupt request are met in a controller, the controller will apply a signal to one
of the seven PRIORITY INTERRUPT lines. The EBox detects the priority interrupt and resolves the
interrupt priority. When the EBox is ready to serve one of the seven interrupt requests, it places the
interrupt channel on the CONTROLLER SELECT lines, encoded PI served on the FUNCTION
lines, and asserts DEMAND.

Every controller (including the DIAZO), upon detecting the leading edge of DEMAND, decodes the
function code to be PI served and compares the low ordtr three bits of the CONTROLLER SELECT
lines with the channel on which it is interrupting. If a true comparison results (one or more controllers
may have true comparison), the controller will place a “I” bit on the DATA line according to its
physical controller number. Controller 0 and controller 1 (physical no. 0 and 1) will put a “I” bit on
bits 0 and 1 of the DATA lines, etc. ACKNOWLEDGE and TRANSFER are not asserted by any
controller.

The EBox, after asserting DEMAND, waits a specific period of time, strobes the DATA lines, and
negates DEMAND. The data will remain valid until DEMAND is negated.

The EBox. after determining which physical controller’s interrupt request it wants to serve, places the
interrupt channel number, in binary, on the low order three bits of the CONTROLLER SELECT
lines: the controller’s physical number, in binary, on the next four bits of the CONTROLLER
SELECT lines (CSOO, CSOl, CSO2, CS03 = 1010 for physical controller 10 etc.); and encoded PI
address in on the FUNCTION lines. It then asserts DEMAND.

Every controller (including the DIAZO adapter) decodes the function code to be PI address in. and
compares the interrupt channel number and physical number with its own. If true comparison resuits
(only one controller will have true comparison), the controller asserts ACKNOWLEDGE.

If the controller is a DTE20 or RH20. it places the interrupt function, the index (if any), and the
interrupt address on the DATA lines and asserts TRANSFER.

If the controller is a DIA20 it simulates the KAlO/KIlO I/O bus interrupt-sequence and places the
interrupt function, the index (if any), and the interrupt address (if any) on the DATA lines and asserts
TRANSFER at the end of the interrupt sequence.

SYS 1014-34

The EBox strobes the data from the DATA lines and negates DEMAND:

1. A specific period of time after DEMAND is asserted if TRANSFER is not detected. The
EBox should note that this is an error condition.

7 _. A specific period of time after TRANSFER is detected, provided TRANSFER is detected
within a specific period of time after DEMAND is asserted. This is the normal condition.

4.2.7.4 High Priority (PIO) interrupt Operation - This priority level is permanently assigned to the
DTEZO to faciiitate deposit, examine and byte transfer operations. The EBus dialogue to service this
interrupt is similar to that described in Subsection 4.2.7.3, with the exception that it preempts all other
pending priority requests.

4.2.8 CBus
The CBus is a synchronous bus system that connects the integral channel control logic of the MBox to
a maximum of eight RH20 Massbus controllers. These controllers are selected (scanned) in such a way
that the first four controllers (O-3) will handle a data transfer rate of approximately one 36-bit word
per microsecond while the second four controllers (4-7) handle a data transfer rate of half that speed.

The MBox is a logical unit which provides the path to the main memory subsystem for both the
integral data channels and the EBox. Each Massbus controller can control up to eight mass storage
disk drives (fixed-head disks or moving-head disks) or up to eight TM02 magtape controllers with each
controller having up to four TU16 or TU45 drives. The purpose of the CBus is to provide a high-speed
path between the MBox channel control logic and up to eight controllers for control and data
information.

A clock-time-division multiplexing technique is used to control the CBus operations. A free-running
clock exists in the EBox and is sent to the MBox by internal connections. One delay line per Massbus
controller is used to synchronize (deskew) the signals between each Massbus controller and the chan-
nel control logic of the MBox.

The channel control continuously selects one of the eight controllers by generating eight selection lines
in the following sequence: 0, 1, 2, 3,4,5-O, 1,2, 3,6, 7; 0, 1. 2, 3,4, 5. . . . The sequence is stepped with
the leading edge of the clock signal.

A Massbus controller is allowed to transmit or receive data and control information only after it has
been selected by the channel control. Four major cycles are used by the channel control and a Massbus
controller during a data transfer operation. Each cycle is asserted by the leading edge of a clock pulse
and is negated by the leading edge of the next clock pulse.

1. SELECT cycle - The SELECT line of a particular Massbus controller is asserted thro.ughout
this cycle.

7 _. REQUEST cycle - The selected Massbus controller will assert the REQUEST line (if data
request is needed) throughout this cycle.

3. WAIT cycle - This cycle is used by the channel control to prepare data and status for
transmisston. Neither data nor status is asserted during this cycle.

SYS 10/4-35

4. DATA cycle - Data are placed on the DATA lines either by the MBox (output data trans-
fer) or by the Massbus controller (input data transfer) during this cycle. The recipient of the
data will strobe the data lines at the trailing edge of the data cycle. All CBus control lines
(ERROR, READY, LAST WORD, CTOM, START, RESET, DONE, and STORE),
except the REQUEST line, are allowed to be asserted during this cycle only.

Controllers 0, I, 2, and 3 are selected twice as often by the channel control’s selection sequence as
controllers 4, 5, 6, and 7.

1. The maximum transfer rate of Massbus controllers 0, 1, 2, 3 is 1 cts/word.

2. The maximum transfer rate of Massbus controllers 4, 5, 6, and 7 is 2 &word.

4.2.9 DTEZO
The DTEZO Ten-Eleven Data Interface serves as the interface between the KLlO Central Processor
and the PDP-I I console or front-end processor(s). To the central processor, the DTEZO appears as a
standard EBus-compatible device controller and to the console/front-end processor the DTEZO
appears as a standard Unibus device controiler. Consequently, either processor can access the DTEZO
for transferring status, control and data using the normal I/O instructions of the respective machines.

The DTE20 consists of bus control and interrupt logic for interfacing with both the EBus and the
Unibus: a 16 X 16 RAlM for storing status, control, and data information required in executing a
transfer: and diagnostic control logic. The bus control logic responds to the processor initiated dia-
logue to load or read internal DTEZO registers. The processors initiate their respective bus sequences
when they execute I/O instructions for the DTEZO. The interrupt logic is included in the DTEZO to
allow the processors to interrupt each other in passing status information and in executing data trans-
fers. The diagnostic control logic in the DTEZO operates in conjunction with the diagnostic control
logic in the EBox to gain direct access to various registers and status and control bits in the EBox and
the M Box. The EBus dialogue is not initiated in executing diagnostic functions but the EBus data lines
may be used in transferring the data between the DTEZO and the EBox and MBox.

The DTEZO is capable of executing the following operations:

1. Deposit
2. Examine
3. Byte Transfer
4. Interprocessor Interrupts
5. Diagnostic

The examine and deposit functions are included in the DTE20 so that the console processor or a front-
end processor can fetch or change any location in the KLIO physical memory while the EBox is either
running or just executing a halt instruction. After being initiated by the PDP-I 1 console/front-end
processor. the examine and deposit functions are handled as a special PI request to the EBox. The PI
request is referred to as PIO. This request will be honored and executed even when the PI system is
turned off. To execute these functions, the console/front-end processor must assemble the address and
assemble or disassemble the data in the DTE20 because of the difference in the length of the address
and data words between the two machines.

SYS 1014-36

The byte transfer function is included in the DTE20 so that the console/front-end and the central
processors can initiate high-speed DMA type data transfers between each other’s memories or between
KLlO main memory and an NPR-type PDP-11 device. Once initiated the DTEZO uses the processors
high priority interrupt facility without further intervention by the program to execute that transfer. On
the KLIO side, the special PI0 request is used to fetch or store a byte in KLlO memory and on the PDP-
I 1 side the non-processor interrupt request (NPR) is used to fetch or store a byte in PDP-I 1 memory
or an NPR-type device. Interrupt requests PI0 and NPR are issued until the byte count maintained by
the DTEZO is zero, at which time an interrupt request is issued on the assignable priority channel(s).

During the byte transfer operation the DTEZO transfers fields of information between PDP-I 1 memo-
ry and KLIO memory via the EBox. On the KLlO side, the fields are of variable lengths and are
accessed through DTE20 byte pointers in the EPT. On the PDP-11 side, fields are either 8 bits wide
and are stored in consecutive bytes or 16 bits wide and are stored in consecutive words. If the field into
which the information is stored is narrower than the field from which it was read, as many of the
rightmost bits as will fit are stored. If the field into which the information is being stored is wider than
the field from which it was read, the information is right justified and filled with zeros on the left.

The interprocessor interrupt facility (doorbell function) permits the processors connected to the
DTEZO to interrupt each other on the assignable interrupt channels to report a change of status as in
the case of reporting a power failure. This facility is also used to report that the byte transfer operation
is done. The assignable channels are PI 1-7 on the KLlO side and BR4-7 on the PDP-11 side.

The diagnostic facilities are included in the DTE20 so that the console processor (the privileged front-
end processor) can execute various diagnostic and console functions. The diagnostic part of the EBus
is used in implementing these functions. In addition, if the function involves the transfer of data (as is
the case for load and read functions) the EBus data lines are also used in executing the diagnostic
functions. In general, the following diagnostic functions are implemented.

I. Clock control functions to start, stop, or single-step the clock; to initiate a clock burst of 1 to
255 clock ticks; or to select the desired clock source.

1
&. EBox control functions to start and stop (HALT and CONTINUE) the microcode and to

control the decoding of some special op codes.

3. Various load functions to facilitate the following:

:I
Load DRAM in EBox
Load CRAM in EBox

C. Load AR in EBox
d. Load MBox control functions
e. Enable EBus register
f. Reset DMA
g. Load channel control functions

4. Various Read functions to facilitate reading all diagnostic registers and RAMS of the EBox,
MBox, and meters.

SYS10/4-37

4.2.10 RH20
The RH20 Massbus controller (MBC) is the internal channel mass storage interface for a KLIO-based
DECsystem-IO. Each MBC is capable of controlling up to eight Massbus-compatible devices (disks,
drums, or magtapes). The MBC can be interfaced with single- or dual-ported drives and will allow
time-shared swapping and paging software to operate the system efficiently with minimum latency. Up
to eight MBCs can be connected to a DECsystem-10 and one or more MBCs can operate (reading or
writing) simultaneously. However, only one drive per MBC can transfer data at a time. Non-data
transfer commands (such as seek and rewind) can overlap and can be issued to any drive at any time as
long as the drive is not involved in executing a read or write command.

For addressing purposes each controller is permanently assigned one unique controller select (CS)
code. A total of eight controller select codes have been assigned since up to eight controllers can be
implemented in a DECsystem-10.

Each controller is also assigned a physical number according to the physical slots in which the con-
troller modules reside.

Both the device code and the physical number of a controller are hardwired on the KL 10 backplane.

The device code is used to address the controller and the physical number is used to identify the
interrupting controller.

Since each controller can accommodate up to eight drives, each drive is permanently assigned a unique
drive select (DS) code for addressing purposes. The drive select code is permanently hardwired in the
drive.

To permit any type of mass storage device (disk, drum, or magtape) to be interfaced with the same
controller. the working registers (status control, address, command, and data) are divided between the
controller and the drive. Registers required for ail drives reside in the controller; registers required to
operate a given drive are implemented in that drive. Accordingly, registers that are implemented in the
controller are referred to as internal registers and registers that are implemented in the drive are
referred to as external registers. Up to 32 internal registers can be implemented in the drive. The RH20
controller and currently available drives only use a subset of the available register address space.

Each controiier has two command (internal) registers. They are the secondary transfer command and
primary transfer command registers. A command in the primary command register will be executed
immediately provided no transfer error condition is detected in the controller. The secondary com-
mand register serves as a command lookahead facility.

The command in the secondary command register will be executed as soon as the command in the
primary command register is terminated (done) and no transfer error is detected in the controller.

C.-IUTION
Oniy data transfer (read/write) commands can be
loaded into the command registers. The program
should load non-data transfer (seek, rewind, etc.)
commands directly into the drive’s (internal) control
register.

The secondary command register allows the software to specify the next command to be executed
before the controller has finished the current command.

SYS IO/438

This means that the controller can start the next command immediately after the current command is
done - instead of waiting for a software interrupt routine to supply the next command, and miss the
next sector. Without this lookahead feature the software can only transfer every other block or page
for different users.

The controller will interrupt the EBox when any of the following conditions occur:

1. A data transfer (read/write) command is done (with or without a transfer error).

7 _. An ATTENTION signal from the drive (caused by SEEK COMPLETE, etc.) is detected on
the Massbus by the controller provided that the ATTENTION INTERRUPT ENABLE
control (CONO) bit is set.

3. A REGISTER ACCESS ERROR is detected in the controller when a drive is loaded or
read.

Commands are classified into two categories: non-data transfer and data transfer.

The non-data transfer commands do not cause data channel transfers. These commands are generally
used to set up the drive for a subsequent read or write command. Typically, the drive will assert the
MBus ATTENTION line to inform the MBC and the EBox that the setup is compiete.

Data transfer commands are those that cause data channel transfers over the CBus. These commands
are limited to read and write operations.

4.2.11 DIA20
The DIAZO IBus adapter control adapts the KLlO execution bus (EBus) to the external I/O bus
structure. The DIAZO is the default controller on the EBus. If another controller does not respond to
the EBus dialogue, the DIAZO will pass on the dialogue to the I/O bus to facilitate communication
with I!0 bus type devices.

4.2.12 Interrupt Facility
The central processor has an &level priority interrupt facility. Seven levels (levels l-7) are program-
mable and one level (level 0) is permanently assigned to the DTE20(s). The order of priority is from 0
to 7, with level 0 having the highest priority.

Each I/O device on the EBus (including internal processor devices) can be assigned one of the pro-
grammable priority levels (channel) to interrupt the processor on that channel when it requires service
or when it has finished a programmed operation. When a device issues an interrupt on level n, the next
instruction is taken from location 40 + 2% of the executive process table. This instruction is then
executed in the executive mode. After the interrupt is serviced, control is restored to the interrupted
program. All processor flags, ACs, and the PC are saved and restored when servicing an interrupt.

Priority level 0, the highest priority level, is not assignable but is reserved for the console/front-end
processor interface (DTEZO) in executing deposit, examine, and byte transfer operations. The DTEZO
can also be assigned a programmable interrupt level for reporting status information and for request-
ing service.

SYS 1014-39

4.2.13 Trap Facility
The direct I/O and priority interrupt facilities permit the processor to maintain system status and to
effect control. To supplement these facilities the central processor also incorporates a trapping mecha-
nism. This mechanism allows certain conditions resulting from an executing program to interrupt the
program sequence without having to resort to the direct I/O or priority interrupt facilities which
would be time consuming. The conditions that are sensed by the trapping mechanism are:

1. Address Violation
7 _. Arithmetic Overflow
3. Pushdown Overflow
4. Page Faults
5. Illegal Instructions in User Mode
6. Monitor Calls (UUO and MUUO)

4.2.14 Internal Devices
The central processor contains several internal devices which can be accessed under executive mode
program control using the appropriate I/O instructions. These devices provide the means for initiating
internal processor functions and for providing ready access to processor status information. The inter-
nal devices are:

I. APR - Arithmetic Processor Registers
2. PI - Priority Interrupt Registers
3. PAG - Pager Registers
4. CCA - Cache Clearer Address and Controi Registers *

2:
TIM - Timer Registers
MTR - Meter.

These registers are considered to be internal I/O devices because they can be accessed under program
control in the same way that conventional I/O devices are accessed using the standard DECsystem- 10
I/O instructions.

4.2.14.1 APR - The APR device facilitates programmabie access and controi of processor identi-
fication information, the address break facility, the cache refill RAM, and the processor status and
error flags.

4.2.14.2 PI - The PI device facilitates programmable access and control of the error address (ERA)
register, the SBus diagnostic cycle control, and the priority interrupt facility status and control bits.

4.2.14.3 PAG - The PAG device facilitates programmable access to the pager in the MBox for setting
up the executive and user base registers and for invalidating desired entries in the pager. This device
also provides the means for selecting the desired mapping mode (KI or KL paging), for selecting the
desired cache use strategy, and for context switching.

4.2.14.4 CC.4 - The CCA device provides programmable access to the cache clearer control in the
MBox for sweeping the cache.

4.2.14.5 TIM and YIITR - The meter (TIM and IMTR) device facilitates access to the following built-
in clocks:

1. The 1 ,KS interval timer which is a source of programmable interrupts with a maximum
period of 32 ms

‘)
_. The 1 ps readable time base

SYS lOi4-40

3. The accounting meter which counts EBox clock ticks and MBox references with two sepa-
rate counters

3. The performance analysis counter which is used in evaluating the performance of the
system.

4.2.15 External and Internal I/O Controllers and Devices (Typical)
Every device controller on the EBus and I/O bus has a 7-bit device selection network, a priority
interrupt assignment, and at least two flags, busy and done, or some equivalent. The selection network
decodes bits 3-9 of the instruction so that only the addressed device responds to signals sent by the
KLIO Central Processor over the EBus. To use the device with the priority interrupt system, the
program must assign a channel to it. Then whenever an appropriate event occurs in the device, it
requests an interrupt on the assigned channel.

The busy and done flags together denote the basic state of the device. When both are clear the device is
idle. To place the device in operation, a CON0 or DATA0 sets busy. If the device will be used for
output, the program must give a DATA0 that sends the first unit of data - a word or character
depending on how the device handles information. When the device has processed a unit of data, it
clears busy and sets done to indicate that it is ready to receive new data for output, or that it has data
ready for input. In the former case, the program wouid respond with a DATA0 to send more data; in
the latter, with a DATA1 to bring in the data that is ready. If an interrupt channel has been assigned to
the device, the setting of done signals the program by requesting an interrupt; otherwise the program
must keep testing done to determine when the device is ready.

42.16 Machine Instructions
Two basic types of instruction are implemented for the KLlO Central Processor. They are those that
reference memory and execute a particular operation such as data transmission, logical operations,
arithmetic operations, or program control operations and those that reference memory and perform
I /O operations for internal devices and for devices connected to the EBus (refer to Section 3, System
Features).

4.3 CONSOLE PROCESSOR SUBSYSTEM
The console processor is a unified hardware/software subsystem that replaces the KAlO/KIlO based
standard console I/O equipment (which is used for read-in operations), the computer operator con-
sole, and the three arithmetic processor indicator panels. To replace this hardware, the console proces-
sor provides an automatic bootstrap mechanism and a console command facility. The console
processor which incorporates a PDP-11 minicomputer system interfaces with the central processor
through the DTEZO Ten-Eleven Interface which is set up to operate in its privileged mode.

The bootstrap facility automatically initializes the dispatch and control RAMS in the EBox, places a
small sequence of KLlO code into KLIO memory, and starts its execution to load the system. Several
bootstrap options including an operator/software dialogue are available. The console command facil-
ities are available through the console terminal (CTY) to permit the operator to examine or deposit
KLlO memory locations and otherwise control and monitor the processor in the same way previously
provided by the replaced operator console and indicator panels.

The PDP-11, used as the console processor, is a 16-bit, general purpose, microprogrammed mini-
computer which uses single- and double-operand instructions and 2’s complement arithmetic. Includ-
ed in the console processor are the associated PDP-11 controllers and peripheral devices.

SYSIO/4-41

The instruction word format is such that the processor can directly address up to 32K words (64K
bytes) of core memory. Only 28K are available for program storage. The remaining 4K are reserved
for peripheral and register addresses. All communication among system components (including pro-
cessor, core memory, and peripherals) is performed over the Unibus. Because of the Unibus concept,
all peripherals are compatible, and device-to-device transfers can be accomplished at the rate of 2.5
million I6-bit words or g-bit bytes per second. All system components and peripherals are linked by
the Unibus and all peripherals are in the basic system address space. Most instructions applied to data
in memory can also be applied to data in peripheral device registers, enabling peripheral device regis-
ters to be manipulated as flexibly as memory.

3.3.1 Devices
The following paragraphs provide a brief description of each component that is part of the console
processor subsystem.

4.3.1.1 KDl l-A Central Processor - This device is the basic component of the console processor. The
KD I1 is connected to the Unibus as a subsystem and controls time allocation of the Unibus for
peripheral devices and performs arithmetic and logic operations through instruction decoding and
execution. The instruction set is implemented through a group of hardware subroutines stored within
the 256- by 56-bit read-only memory (ROM).

4.3.1.2 KY 11-D Programmer’s Console -This device is an integral part of PDP- 11 system and provid-
es the operator with a direct system interface through the control switches and display indicators. The
control switches provide the operator with real-time control of normal program and diagnostic oper-
ations, thus allowing the operator to start, stop, load, modify, or continue a program.

4.3.1.3 KWl 1-L Line Clock Option - This device providesa method of referencing real-time intervals
by generating a repetitious interrupt request to the KD 11. The rate of interrupt is derived from the ac
line frequency.

4.3.1.4 MFll-UP Memory -This device is a read/write, random access, coincident current, magnetic
core type memory with a maximum cycle time of 980 ns and a maximum access time of 425 ns. It is
organized in a 3D, 3-wire planar configuration. Storage capacity is 16,384 words (32,768 bytes), having
an l&bit word length (16 data bits plus two parity bits).

4.3.1.5 IMMI l-UP iMemory - This device is a 16K word expansion memory having characteristics
identical to the MFll-UP.

4.3.1.6 BM873-YD/YC ROM Loader 1Moduie - This module is an essential part of the console pro-
cessor. It provides 256 words of read-only memory which are blasted to contain a number of routines
to facilitate bootstrap, power fail, and dump operations. In addition to these routines, the ROM
module contains four locations which serve as entry points for these routines. The routines in the
ROM facilitate bootstrapping and dump operations to be initiated from the KLiO via the DTEZO
IO/! 1 Interface and by pressing a physical LOAD pushbutton on the margin check panel (refer to
Power S.vstem Description Mamai).

Either the PDP-I 1 based DECtape or the PDP-I 1 based RJPO4/06 disk may be specified for the
bootstrap or dump procedure.

XOTE
These storage devices are not supported as system
devices.

SYSiO/4-42

4.3.1.7 DLl I-C Asynchronous Line Interface - This device provides simultaneous t-way transmission
between the console terminal and the Unibus. The DLll-C is a character-buffered interface which
controls and translates serial bit stream data from the terminal to parallel character data for transfer
over the Unibus. The interface also provides parallel to serial translation from the Unibus to the
terminal.

4.3.1.8 DLI 1-E Asynchronous Line Interface - This device has the same general characteristics as the
DLl I-C, and in addition provides control functions for a communication modem (e.g., Bell Model
103) that interfaces with the KLINIK diagnostic facility.

4.3.1.9 LA36 Keyboard Terminal - This device is a 30-character per second, serial upper/lowercase
character printer with a 132-column format. The terminal interfaces to the Unibus through the DLl l-
C and is used as the main console terminal (CTY).

4.3.1.10 RJP04/06 Disk File System - This system consists of an RPO4/06 disk drive and an RHl 1
device controller. The RPO4/06 is a dual Massbus port, moveable head. disk pack drive used as the
prime storage media for KLlO and PDP-11 diagnostic and bootstrap load routines. The RH 11 provid-
es the control and parallel data path interface between the Unibus and RPO4/06 through the Massbus.
In addition to communicating with the KDll, the controller has access to PDP-11 memory to fetch
and store data.

NOTE
The drive is not supported as a system device from
the PDP-1 I side but is supported as a system storage
device from the KLIO side. (Refer to - Secondary
Memory Subsystem Description.)

4.3.1.11 TCIl-C Magnetic Tape System - This system consists of a TCl 1 control unit and TU56 tape
transport. The TCl 1 controls transport selection and tape motion and direction. In addition it controls
transport read and write operations, and buffers data transferred in either direction. The TU56 is a
dual unit. bidirectional tape transport which handles 3/4-inch magnetic DECtape. The transport uses
the Manchester-phase recording technique with redundant recording. The tape serves as an auxiliary
storage media for KLlO and PDP-11 diagnostic and bootstrap load routines; it is not supported as a
KL 10 system device.

4.3.1.12 BClI-A Unibus - The Unibus is a 120-conductor ribbon cable connecting the console/front-
end processor system components. The Unibus consists of 56 signal and 64 ground lines assembled
alternately within the cable to minimize crosstalk.

4.3.1.13 DTE20 Ten-Eleven (Console/Front-End Processor) Interface - This device connects the
KLlO central processor with the PDP-11 console/front-end processor to provide the system with
interprocessor interrupt, examine, deposit, byte transfers, diagnostic, and boot facilities.

On the EBus, the DTEZO appears in some respect as a KLlO-based DECsystem-10 device controller.
On the Unibus it connects as a standard PDP-11 peripheral device, using the direct memory access and
vector interrupt features of the PDP-11.

SYS10/4-43

43.2 Interdevice Transfers
-

Communication between two devices on the Unibus is in a master-slave relationship. During any bus
operation only one device has control of the bus. This device (master) controls the bus when commu-
nicating with another device on the bus (slave). For example, the KDI 1. as the master, transfers data
to the MFl 1 or MM1 1 which act as the slave. Master-slave relationships are dynamic. The KD 11, for
example, can pass bus control to a disk. The disk, as master, may then communicate with the slave
memory.

Since the Unibus is used by the KD 11 CPU and all its I/O devices, a priority structure determines
which device obtains control of the bus. Consequently, every device capable of becoming bus master
has an assigned priority level. When two devices having identical priority levels simultaneously request
use of the bus, the device electrically closest to the KD 11 receives control. The KD 11 performs priority
arbitration and, when no other device has bus control, assumes bus control.

Full 16-bit words or 8-bit bytes can be transferred over the bus between master and slave. The data in
(DATI) and data in pause (DATIP) operations transfer data into the master; data out (DATO) and
data out byte (DATOB) operations transfer data out of the master. When a device requests control of
the bus, it is for one of two purposes:

1. To make a direct memory access (DMA) transfer of data directly to/from another device or
memory without processor intervention

2. To interrupt program execution and force the processor to branch to an interrupt service
routine.

Bus control is obtained under a nonprocessor request (NPR) for the direct memory access, or under a
bus request (BR) for an interrupt. -

Requests for the bus can be made any time on the BR and NPR lines. Transfer of bus control from one
device to another is made by the KD 11 priority arbitration logic which grants control of the bus to the
device having the highest priority. NPRs are accorded higher priority than BRs. The NPRs are ser-
viced between bus cycles, in addition to speciftc times during wait or trap sequences. BRs are serviced
on completion of the current instruction if the requesting priority exceeds that of the processor.

43.3 Functions
One of the major functions of the console processor is to provide the traditional (KA IO/K1 10) console
functions. The consoie processor is programmed to accept console commands to display and change
locations in KLlO memory, to start and stop the central processor, and to affect numerous other
operations. The functions, initiated through the terminal connected to the console processor, are
implemented by the following hardware-impiemented operations.

1. Examine
2. Deposit
3. Byte Transfer
4. Interprocessor Interrupts
-s. Diagnostic and Miscellaneous Console Functions
6. System Bootstrap.

4.3.3.1 Examine/Deposit Operations - The examine and deposit functions allow the console proces-
sor to fetch or modify any locations in KLIO memory while the central processor is running or execu-
ting a halt instruction. Examine and deposit are handled as a priority interrupt (PI) request with a
priority higher than any programmed PI level. Note that these functions are completed even when the
PI system is off and the central processor is halted.

-

SYSlOj4-44

The deposit operation accesses and writes a 36-bit data word into a KLIO memory location. Both the
data word and 23-bit addresses are entered through the console terminal. The examine operation
accesses and retrieves a 36-bit data word from a KLlO memory location for display on the console
terminal. As with the deposit, the examined memory location is specified through the console terminal.

An examine or deposit starts when the PDP-1 I program writes the KLlO address into the DTEZO. No
program interrupts are generated on the KLIO or PDP-11 side to indicate completion of the operation.
Therefore, the PDP-11 program must check for completion by monitoring the appropriate flag in the
status register of the DTE20. The DTE20 logic is structured such that once the address and data is
written into the DTEZO it remains intact after an operation. The PDP-11 may now perform repeated
examines and deposits by changing the KLlO address each time.

4.3.3.2 TO lo/TO 11 Byte Transfer Operations - TO lo/TO 11 transfers are multiple bus operations
(involving both the EBus and Unibus) transferring fields of information between the KLlO and PDP-
I I. Multiple transfers are executed for both byte transfers, only the source and destination differ. In
the TO1 1 transfer the source of information is the KLlO and the destination is the PDP-11. In the
TO 10 transfer, the source and destination are reversed, i.e., the source is the PDP-11 and destination is
the KLlO.

The fields of information transferred between the processors differ at the 10/l 1 interface (DTE20). At
the KLIO side of the DTE20, the fields are of variable length and are accessed through a KLlO byte
pointer. At the PDP-11 side of the DTE20 the fields are either 8 bits wide and stored in consecutive
byte locations in PDP-11 memory, or 16 bits wide and stored in consecutive (even) word locations in
PDP- 1 I memory. If the field into which the information is being stored is narrower than the field from
which it was read, as many rightmost bits as will fit are stored. If the field into which the information is
being stored is wider than the field from which it was read, the information is right-aligned and lilled
with zeros in the high-order bits.

Prior to the actual transfer, several parameters are provided by both processors to the DTE20. Initially
(possibly at system startup), the PDP-11 determines the transfer rate and Unibus address bits 17 and
16. The transmitting processor specifies the source address. The receiving processor specifies the desti-
nation address for the data and a byte count equivalent to the length of the data string. In addition, the
receiving processor determines whether it alone, or both processors, will receive the normal termi-
nation interrupt. When the transfer is initiated the receiving processor’s byte count is decremented as
each word (or byte) is transferred. At zero byte count the transfer is complete and the receiving proces-
sor (and transmitting processor, if specified) is interrupted. Note that in operation, the actual interrupt
is issued from the DTE20.

4.3.3.3 interprocessor Interrupts - These interrupt operations provide the interprocessor commu-
nication function, i.e., the capability of either processor to interrupt the other. The interprocessor
interrupts (doorbell feature) allow the KLlO to interrupt the PDP-11, as well as the PDP-11 to inter-
rupt the KL 10. The doorbell consists of a programmable interrupt and status flags located in the KLlO
and PDP-I 1 status registers of the DTE20.

For the PDP-11 to interrupt an interfaced KLlO, the PDP-11 sets an interrupt flag in its associated
DTE20 status register using a DATO. With the flag set, the DTE20 generates an interrupt to the
KL 10. The KL 10 then executes a CON1 which informs the KL 10 that the PDP- 11 has programmed an
interrupt to the KLlO for it to initiate appropriate action.

The procedure is executed in a reversed but similar manner for the KLlO interrupting the PDP-11. In
this case. the KLIO sets an interrupt flag by executing a CON0 to the DTEZO which in turn generates
an interrupt to the PDP-11. The PDP-11 discovers the cause for the interrupt by monitoring the flag in
the DTEZO status register and initiating appropriate action.

SYS10/4-45

4.3.3.4 Diagnostic and Miscellaneous Console Functions - Other console functions, such as displaying
the contents of certain KLlO registers or memory locations require the cooperation of the operating
systems. The operating system must periodically store the quantities to be displayed in the commu-
nications areas (Subsection 4.3.5). Displayed information may include the PI system state, current job
being run. number of active jobs, program counter on the last clock interrupt, etc. It is also possible to
simulate ail of the traditional console indicators used while the system is in normal operation.

Major KL 10 CPU state information is continuously available on the diagnostic bus whiie the system is
running. In addition, for the case of a KLIO crash, the PDP-11 can use the diagnostic bus to determine
additionai hardware status information. However, the console processor is not allowed to use the
diagnostic bus for data transfers during normal system operation since this would interfere with nor-
mal traffic on the EBus.

4.3.3.5 System Bootstrap Function - Initially both systems must be loaded by the bootstrap handier in
order to begin operation. Bootstrapping can be initiated in several ways:

I. By a power fail restart

‘) *. Operator depressing a bootstrap button (DECtape, disk pack, or switch register) on the
system margin check/switch panel

3. KL 10 initiating a bootstrap of the PDP-1 I

4. Operator entering appropriate commands to the console command handler via the console
terminal.

Generally, the bootstrap is initiated from the BM873 ROM loader module which provides a minimum
number of instructions to load the absoiute loader program from a selected storage media. The abso-
lute loader in turn loads the initialization. handling, and device support routines required by the PDP-
I 1. The bootstrap then loads the KLlO control RAM and dispatch RAM with sufficient code to start
the KLIO running. As more code is transferred, the PDP-I 1 will configure KLlO’s memory, load the
resident monitor, set up communications with the console and front-end processors, and eventually
relinquish control to the resident TOPS-IO monitor.

4.3.4 Modes
The DTEZO Ten-Eleven Interface has two switch-selectable operating modes: privileged and restricted.

A processor that is connected to a privileged DTEZO has access to the diagnostic bus and the capability
to execute unprotected examines and deposits. The console processor must operate in this mode.
Unprotected examines and deposits are unique in that they require special software and may address
any of the following areas in KLIO memory: executive process table and executive virtual address
spaces. user process table and user virtual address spaces, and the actual physical address space.
Although a privileged processor normally executes protected examines and deposits, it does have the
capability to override the normal protection checks defined in the executive process table (EPT).
Because of the relatively unlimited access allowed, a privileged console processor may seriously
degrade system operation or crash the associated KLIO Central Processor.

Non-consoie front-end processors must connect to a DTE20 that is set up in the restricted mode. A
restricted processor can only access KLlO memory provided the KL 10 has executed a CON0 instruc-
tion and enabled the associated PI0 level. After PI0 is enabled the restricted processor can then only
examine in a KL IO-owned region and deposit in its own PDP-I l-owned region. In addition, the pro-
cessor is prohibited from using the diagnostic bus. Since the restricted processor cannot violate the
KL IO’s system security, it has no more privileges or capabilities than a user program. Because of its
limited access it does not have the capability to seriously degrade the KLlO’s operation.

SYS 1013-36

4.3.5 Interprocessor Communications
Interprocessor communication is necessary to allow the PDP-11 and KLlO to execute those functions
required during time-sharing, bootstrapping, and diagnostics. This communication is implemented by
special communication areas allocated in KLlO memory. These areas are used to coordinate status,
prepare byte transfer operations, and process limited amounts of data. Communication areas are
allocated to each processor in the system such that each processor can read or write its own allocated
area (i.e.. KLlO-owned region, PDP-1 l-owned region), but only read the other system-owned area.
These areas effectively reflect the hardware and software states of the owning processor to its associ-
ated processor.

In addition to the communication area functions, the majority of control information and data trans-
ferred between a KLlO and PDP-11 is through software processing queues. A TO1 1 queue is main-
tained in KLlO memory by the monitor. The PDP-11 will access this queue using byte transfers
through the DTE20. The TO10 queue is maintained in the PDP-11 memory and is accessed by the
KLIO in a similar manner. Since the processing queues are not part of the communication areas and
are accessed only by byte transfer operations, they are protected from modification by any processor
other than the constructing processor. When a queue is constructed and ready for transfer operations,
the transmitting processor will interrupt its associated processor. At this point the interrupted proces-
sor begins processing the queue.

The KLIO is also able to communicate with a console terminal directly through the communication
areas, independent of queue processing. Normally, it is only used during bootstrap, diagnostic oper-
ations, or when the monitor finds it inconvenient to output an error message using queue processing.

4.3.5.1 Communication Areas - Initially the KLlO will set up the communications areas at load time
with each processor responsible for protecting itself from the other. Since interprocessor commu-
nication is through the DTEZO, a pair of communications areas is associated with the DTEZO (kc.,
KL IO-owned and PDP- 11 -owned areas).

The PDP- 11 -owned area is defined in KL 10 memory by the deposit relocation and protection word in
the EPT (EPT DPW). The area is written by the PDP--11 using protected deposits and read by the
KL 10. Each PDP-I 1 in the system has a separate area which it alone can modify. The KLlO-owned
area is defined purely in software and separate from the PDP-1 l-owned area. It is written by the KLlO
and read by the PDP-11 using protected examines.

Each processor’s communication area is divided into two zones. The first zone contains 16 (36-bit)
words with identification and hardware and software status information specific to the owning proces-
sor. The second zone contains an additional eight words of communication status information for each
processor that is in communication with the owning processor. Thus, the size of each communication
area is variable, depending on the number of processors in the system.

4.3.5.2 Queue Processing/Messages - Information transferred between processors is stored in vari-
able length queues and accessed using byte transfer operations. Each processor maintains a queue of
messages waiting for transmission to the associated processor. Each queue has an associated word in
the transmitting processor’s communication area, indicating to the receiving processor the size of the
accumulated queue.

After a transmitting processor places information in its queue, it interrupts the receiving processor
notifying it to start processing queue entries using byte transfers. The DTFGO hardware is such that
executing byte transfers, in either direction, requires cooperation of both processors. For example, to
perform a TO10 byte transfer the following general parameters are required.

1. The PDP-11 provides the DTE20 with the source address of the queue to be transferred.

SYS10,/447

2. The PDP-11 specifies how the queue is stored in KLlO memory, i.e., S-bit bytes of 1Qbit
words.

3. The KLIO sets the EPT byte pointer word to a byte pointer locating where the queue is to be
stored.

Queue content is varied, containing control information as well as data. Each queue content (or mes-
sage) contains the length of that message (in bytes) in its first entry. Most messages will contain
information identifying the PDP-I 1 device inputting data, or the PDP-11 device for which the data is
destined. Message content may contain information concerning queue processing. For example, it may
contain information indicating the end of a queue and resetting the DTEZO to begin processing the
next queue. In some cases, the queue message may be in the form of a pointer that defines data not in
the queue but located eisewhere in the transmitting processor’s memory. These type messages are used
when it is more efficient to change the byte pointers to point to another area of memory than to
duplicate that memory area in the queue.

4.4 MAIN IMEIMORY SUBSYSTEM
In a KLlO-based system such as the 1080 and 1090 systems, main memory includes core, cache, and
fast memories.

Three types of core memories may be used. They are designated MFIO, MGlO, and MH 10 memories.
All of these memories can be expanded in 32K increments. The MFlO incorporates four access ports
and the MGIO and MH 10 memories have eight access ports. These ports facilitate memory module
interleaving and sharing of memory by several processors (including external high-speed commu-
nications and data channei processors).

The cache memory is an integral part of the MBox in the central processor. Essentially, the cache is a
high-speed multiple set associative extension (buffer) of core. Each time the EBox requests a word
from memory, the MBox fetches the requested word and the three adjacent words if the requested
word is not already in the cache. When the first word comes in it is given to the EBox and placed into
the cache. The EBox then continues executing the programmed instructions. Meanwhile, the MBox
will wait for the other three words to come in from core. As each word comes in it is automatically
placed into the cache. While this is going on, the EBox cannot cause another core cycle to be started
but can get an additional data or instructions from the cache if these words are already in the cache.
Simulations have shown that after the cache is initially refilled, a hit ratio of over 90 percent can be
achieved. The term “hit” applies to the condition where the requested word is in the cache. When the
EBox issues a request to write memory, the MBox writes directly into the cache but does not write
through to core. This characteristic of the MBox requires that core be updated at various times. A new
instruction (SWEEP) is therefore implemented to facilitate this operation.

Fast memory is an integral part of the EBox. It contains 16 locations which are addressed in place of
the first 16 core locations. These fast memory locations can also be used as index registers and as
accumulator registers when specified in the instruction AC or XR fields.

The core memory subsystem is not dependent on the processor for its timing. It establishes its own
timing in sync with the master clock in the EBox and, therefore, operates at maximum rate in an
asynchronous manner. A memory module has three modes of operation: the read mode, the write
mode. and the read-modify-write mode. The mode is established for each cycle by a signal from the
processor.

SYS 101~38

1. Read Mode - In a read mode cycle the processor remains connected to the memory moduie
only long enough to access the operand or the next instruction. The processor can then
continue its own operations, and can, in fact, access a location in another memory module
while the first memory independently completes its read-write cycle.

2. Write Mode - In a write mode cycle, the processor remains connected to the memory mod-
ule only long enough to transfer the contents of the processor’s memory buffer (MB) register
into the module’s buffer register. Each device then continues independently.

3. Read-Modify-Write Mode - In a read-modify-write cycle, the processor remains connected
to the memory module for a length of time equal to the access time, plus the time required to
execute the algorithm specified by the instruction.

A bus system runs between all memories so that each processor must be interfaced to its own distinct
bus. Each MFlO memory unit has the facility for four separate buses, allowing up to four processors to
access any one memory module. The MGlO and MH 10 memory units have facilities for implementing
eight separate buses. Each bus has a priority associated with it, allowing synchronous devices, such as
displays, and high-speed storage or communication channels to have priority over the central proces-
sor. Bank selection may be done on either high-order or low-order address bits. Thus. an installation
may select address interleaving between two or four memory modules for added memory efficiency.
Each memory location contains 36 data bits and 1 bit for parity check. Parity is checked and generated
at the processor to protect against both memory and bus transmission errors.

Memory interleaving and assignment of bus priorities may be specified for most efficient use of the
system.

4.5 SECONDARY MEMORY SUBSYSTEMS
Several types of secondary memory subsystems may be inciuded in the 1080 and 1090 systems. They
are:

I. Console processor-based DEC magnetic tape, TCl l/TU56 (not supported .as a system
device)

7
*. Console processor-based random access disk, RJPO4/06 (not supported as a system device)

3. Central processor-based random access disk, RHPO4/06 and RTPO4/06

4. Central processor-based swapping disk, RHSO4

5. Central processor-based standard magnetic tape, THU16 and TTU16

6. Central processor-based standard magentic tape, TU70/72

7. Central processor-based DECtape, TD lO/TU56.

The system-supported secondary memory subsystem serves as a large file storage and swapping sys-
tem. Both disk and magnetic tape storage drives can be attached to either an internal or an external
data channel I/O processor (also referred to as a channel controller). The internal channel I/O proces-
sor is an integral part of the MBox in the central processor. This I/O processor interfaces with main
memory and an integral RH20 Massbus controller which is a universal storage controller that can be
interfaced with either disk or magnetic tape drives. The external channel I/O processor is an older
stand-alone channel controller (DFlO-C or DAS33) which interfaces with main memory and stand-
alone R H 10 M assbus controller. The RH 10 is also a universal storage controller that can be interfaced
with either disk or magnetic tape drives.

SYS 1014-49

Physicaily, the internal and external channels are quite different. The external channels employ stand-
alone channel and Massbus controllers while the internal channels are an integral part of one CPU
assembly. Functionally, the internal and external channels are similar with only minor differences in
programming requirements.

NOTE
DECtrpe cannot be interfaced with the high-speed
data channels. Data can only be transferred to/from
a DECtape under direct program control.

4.5.1 Disk Subsystems
A disk (or a drum) is generally the largest random access storage device in a computer system, and it
also provides the fastest storage outside of core. These devices are exceptionally desirable as backup
storage for memory, especially for storage of large files and for swapping in time-sharing systems -
while the currently active user programs are in core, inactive programs are stored on a disk or drum.
Unlike magnetic tape, a disk or drum is constantly in motion and has a predetermined format with
data blocks of fixed length. Hence, individual blocks are addressable and at the simplest level, reading
and writing may be the only functions the system need perform.

In a drum unit, the data is recorded in tracks that are circles on the surface of a cylinder. In this case
the tracks are all the same length, so both timing and density are constant. As with a disk, the drum is
divided into sectors, and the basic data blocks are recorded in the sectors of the tracks.

In a disk pack unit the storage medium is a removable stack of disks. Hence, not only is the storage
capacity much greater, but the data can literally be stored on the shelf like magnetic tape while the
drive is being used with another pack. Each disk surface has tracks and sectors. However, there are
many surfaces, and the set of identically numbered tracks on the various surfaces constitutes a cylin-
der. (Logically a disk pack is equivalent to a drum pack.) As before, the basic data block is a sector of a
track, which is addressed as the intersection of a cylinder and a surface. In terms of the addressed
scheme used in continuous data processing, the disk pack is treated as though it were a drum pack:
thehardware counts through all the tracks (surfaces) one cylinder at a time.

If there is a separate read-write head for each track (fixed-head disk), the average random access time
is a little over half a revolution; otherwise additional time may be required for head positioning. Since
the storage medium is continuous, has a fixed format, and is in constant motion (both in speed and
direction), functions can be limited simply to read and write, with an automatic search for an initially
specified sector. However, in more complex systems, there may be a separate search function and even
special functions for handling non-data parts of a sector.

A disk or drum system always consists of a control and a number of disk, drum, or disk pack units. In
all cases. the program communicates with the control, which in turn governs all the units but effective-
ly communicates with only one.at a time. Data transfers between the control and device are governed
by the control. The control is always connected to the EBus, but only for the transfer of initial condi-
tions and status. For controls on the I/O bus, a DIAZO I/O bus adapter is required. Once the program
sets up the system for reading or writing, data transmission between control and memory is handled
automatically via a separate channel/memory bus (i.e., bypassing the central processor). To accom-
plish this. the control is connected to the memory bus through a data channel controller (internal or
external) or contains the necessary hardware for direct connection to the bus.

4.5.1.1 RHP04/06 and RTP04/06 Disk Subsystem - The RHPO4 and RTPO4 disk subsystems provide
high-performance, random access disk drives, with a 20 million (36bit) word storage capacity. The
RHPO6 and RTPO6 disk subsystems provide twice this capacity with the same high performance.

SYS10/4-50

The RN4106 disk drive is initialized through a universal controller (RHLO or RH20) and transfers
data directly to and from memory at 5.6 ps per word via the RHlO or RH20 Massbus controller and
the DFlO-C or internal data channel controller. Since the Massbus controller provides overlapped
positioner operation, the TOPS-10 operating software system will simultaneously position two or
more disk drives, shortening the effective access time and increasing throughput. (Up to eight drives
may be connected to a single controller.) This feature, in combination with the rotational position
sensing (RPS) capability, is utilized by the TOPS-IO operating system to optimize disk access across all
jobs active in the system.

The RPO4/06 disk drive offers a high level of data reliability. A phase-locked loop clock system and
state-of-the-art recording provide the latest in reliable reading and recording techniques. In addition,
error detection and correction hardware withill the RHPO4/06 disk system provides information as to
the position and pattern of any error burst up to 11 bits within the data field. Correction of any data
field errors is then accomplished under TOPS-10 software control. The ability to offset heads also
facilitates read recovery and increases data reliability. Moreover, if the sector on a disk pack becomes
defective so that all attempts by the hardware and the software to recover data fail, the operating
system dynamically marks the sector as bad so that no future attempts will be made to use it again.

To support the 1080 and 1090 systems, there is also a dual-port RPO4/06 disk drive which interfaces
with both an RH lO/RH20 and RH11 controller. This disk drive is needed to facilitate diagnostic and
bootstrapping functions in the event of a crash and to facilitate system dump procedures.

NOTE
Access to the RPO4/06 from the PDP-11 is not sup

ported for system storage use. Access is available
only for booting and diagnosing the system. How-
ever, from the KLlO side (via the RHIO/RHZO) the
drive may also be used for system storage.

4.5.1.2 RHSO4 Disk Subsystem - The RHS04 swapping disk subsystem is a fixed-head disk that
provides a time-sharing or real-time DECsystem-1080/1090 with a fast access, high transfer rate
swapping device which greatly enhances system performance and load handling capacity.

The basic RHSOCC disk provides 256K 36bit words of fast access storage for swapping and for
storage of program libraries. With zero positioning time, an average latency time of 8.5 ms and a
transfer rate of 4 PS per 36-bit word, the RHS04 disk system can swap a 4K user job in or out of core
memory in an average of 25 ms.

Control for the RHS04 disk system is provided by the RHlO universal controller which is interfaced to
both the I/O bus and to a DFlO/DFlO-C data channel which is, in turn, interfaced directly to the
memory bus of the DECsystem-10. A single control may handle up to eight swapping disks, making
possible a total swapping capacity of 2 million words.

The DFlO-C data channel allows data transfers between the RHSO4 system and memory to take place
simultaneously with central processor computation, as long as the channel and processor are not
accessing the same memory module.

SYS 10/4-5 1

-

4.5.2 IMagnetic Tape Subsystem
Two types of magnetic tape equipment are available for use in a DECsystem- 10. One handles the large
reels of half-inch tape that are standard throughout the industry; the other handles DECtape, of
DIGITAL’s own creation. DECtape trades off some of the speed and storage capacity of standard
magnetic tape for the convenience of paper tape. Its small reels are easy to handle and carry about,
making DECtape desirable for program input. In addition, the redundancy used in recording helps to
maintain the information intact despite heavy handling. The format of the tape allows single blocks to
be replaced without affecting the rest of the tape, thus making it especially convenient for holding a
library of commonly used routines. ,

The industry-standard magnetic tape may be used as backup storage for memory and is especially
convenient for storing large amounts of data that need not be available to the system continuously. (A
disk or drum can store information much faster, but physical storage of the information storing
medium separate from its handling equipment is less convenient, and often impossible.)

Both types of magnetic tape equipment automatically record error-checking information while record-
ing data on tape. This provides a means of checking for possible data loss that results from using the
tape as a storage medium.

4.5.2.1 TU70/71/72 IMagnetic Tape Subsystem - The TU70-series of high-speed magnetic tape drives
represents the latest state-of-the-art design in tape transport technology. The following three models
are offered:

I. The TU70 is a 200 inch/second, 9-track transport with program-selectable recording den-
sities of 800 (non-return-to-zero-inverted encoded, NRZI) and 1600 (phase encoded, PE)
characters/inch.

2. The TU71 is a 200 inch/second, 7-track transport with program-selectable recording den-
sities of 200, 556, and 800 NRZI encoded characters/inch.

3. The TU72 is a 125 inch/second, 9-track transport with program-selectable recording den-
sities of 1600 (PE) and 6250 (group coded recording, GCR) characters/inch.

All drives have a rewind speed of 500 inches/second.

The TU70-series drives incorporate such features as automatic threading and loading of.5,8-l/2, and
10-I 12 inch reels as well as industry-standard cartridges. Dynamic amplitude control during read
operations reduces read errors which avoids the need for preamplifier adjustments and allows opti-
mum performance with different tape brands on the same drive. All TU’IO-series tape drives are equip-
ped with an automatic reel hub to speed and ease tape loading and eliminate reel slippage. An analog
capstan control provides constant motor drive control during read/write and rewind for smoother
operations and greater drive-to-drive compatability, while a velocity feedback reel control provides for
direction and velocity sensing of the tape loop in the vacuum columns to minimize reel over-speed.
This prevents tape stretching resulting in longer tape life and greater machine reliability. A linear high-
speed rewind mechanism reduces rewind time and lessens stress on the reel drive system, resulting in
smoother operation. A tape storage pocket is provided for convenience.

The basic TX01 and TX02 controllers handle up to eight tape drives each and provide direct access to
the DECsystem-IO memory via the external data channel (DXIO). The controller includes such fea-
tures as improved phase-encoded error correction techniques at 1600 characters/inch for fewer per-
manent and temporary read errors: a read-only memory control for implementation of
microprogrammed diagnostics: monolithic MS1 design for greater reliability; loadable in-line micro-
programmed diagnostics; programmable maintenance memory; adjustment-free read-detection; and a
radial interface which allows each individual drive to be switched out or physically removed without
affecting the operation of other units.

4.5.2.2 THU 16/TTU 16 Magnetic Tape Subsystem - The TU 16 is a low-cost, industry-compatible, 9-
track magnetic tape transport. It uses standard recording formats, with densities of 200, 556, 800, and
1600 characters/inch, selectable under program control. Reading and writing are performed at 45
inches/second. The recording method is NRZI for 200, 556, and 800 characters/inch and PE for 1600
characters/inch.

The TUI 6 magnetic tape transport operates through an RHlO or an RH20 Massbus controller (MBC)
which transfers data directly to and from memory via an external or internal channel controller respec-
tively. The first TU 16 on the MBC includes a control unit plus the master tape control electronics
(TM02/TM03) in the same cabinet.

Parity is checked character-by-character when reading and writing on tape to verify the accuracy of
data transfer. With NRZI, there is also a cyclic redundancy check (CRC) character generated or
checked at the end of each record, plus a longitudinal parity check (LPC) character generated or
checked at the end of each record. Data reliability of the TU16 is enhanced by the 1600 character/inch,
phase-encoding, self-clocking feature which is not dependent on precise tape speed control.

Reading can be performed while tape is moving in the forward or reverse direction; however, writing
occurs only in the forward direction. To enhance tape life, tape motion is controlled by vacuum
columns and a servo controlled single capstan.

4.5.2.3 TU56 DECtape Subsystem - A’ DECtape system consists of a TD 10 control and up to four
TU56 dual DECtape transports. Any number of tapes can be in motion simultaneously, but the con-
trol can monitor only one at a time. Both reading and writing can be done in either direction of tape
motion. with an average data transfer rate between processor and tape of 400 w per 36-bit word. Each
transport has two reels, which function as supply or takeup on the direction of tape motion. A full reel
has 260 feet of 3/4-inch, 1 mil magnetic tape and can store 2-l/2 million data bits, 3 bits per frame
(73,984 36-bit words in standard KLlO DECtape format).

4.6 BAlO UNIT RECORD (HARD COPY) EQUIPMENT
The following subsections describe the line printer, card reader, card punch, and plotter. These devices
are primarily used for communication between computer and operator using a paper or card medium.

The line printer provides text output at a relatively high rate. The program must effectively typeset
each line: and then upon command the printer prints the entire line.

SYS 10/4-53

The card equipment processes standard 12-row, 80-column cards. Many programmers find cards a
convenient medium for source program input and for supplying data that varies from one program run
to another. Cards are convenient to prepare manually, and simple changes are easy to make: individual
cards can be repunched, and cards can be added or removed from the deck.

The plotter is an incremental digital plotter that produces quality ink piots of computer-generated
data.

The BAlO hard copy equipment cabinet houses two controllers for these devices. They are the BAlO
line printer/card reader/plotter control and the CPIO card punch control. The TDlO DECtape control
cabinet may also be equipped with a plotter control. In addition, the CPIO card punch control may be
mounted in a stand-alone cabinet.

4.6. I CR 10 Card Reader
The card reader handles standard 12-row, 80-column cards at speeds of 300to 1200 cards per minute
depending on the model. Once started, an entire card is read column by column. The reader supplies
each column to the processor as 12 bits corresponding to the column punch and also in a more
compact form. The program can translate the column data in any way it wishes, but the monitor
automatically translates the standard DIGITAL character representation into ‘I-bit ASCII. Of course,
the data can simply be in binary at three columns per word. (A 7 and 9 punch in the first column is the
traditional indication that the rest of the card contains binary data.)

4.6.2 LPI0 Line Printer
These line printers output hard copy composed of lines 132 characters long at rates of 300 to 1250 lines
per minute. Various character sets are available. Besides accepting printing characters, the printer
responds to ten control characters, HT, CR, LF, VT, FF, DLE, and DC1-4. Only these control codes
affect the printer, but the interface recognizes two others: NUL, which is ignored, and DEL (delete),
which allows expansion of the character set by providing a means for distinguishing between control
characters and printing characters with the same codes. All other codes are ignored.

Printers LPIOA, C and F have a 64-character print drum whose print positions are selected by the
figure and uppercase codes, 040- 137. Lowercase codes (140-176) are also valid for these printers: when
a lowercase code is given, the corresponding uppercase code is loaded into the buffer. Printing speeds
of these printers are 300, 1000, and 1250 lines/minute, respectively.

Models D and H have a 96-character drum whose print positions are selected by the figure, uppercase,
and lowercase codes, 040- 176, and the delete code. A single delete code is ignored, but two consecutive
177s cause the code I77 to be loaded into the buffer. When a code for a printing character is the same
as one for a nonprinting character and is loaded by giving it immediately after a delete, the printing
character is said to be “hidden” under the nonprinting one. Printing speeds of these printers are 600
and 925 lines/minute, respectively.

Model E has a 128~character drum and uses the entire set of 7-bit codes for printing characters, with
characters hidden under the ten control characters and also under null and delete. The printing speed
of this model is 500 lines/minute.

The character sets in models A to E are fixed, but models F and H have removable drums. Two
standard versions (designated respectively by E and F appended to the model number) of these drums
are available with EDP and scientific character sets: in the latter, zero and i! are crossed.

The printer has a 132-character buffer that holds the image of a single line; the program must first load
the buffer up to five characters at a time, and then give a control character to print the entire line. The
buffer is loaded from left to right, and only the portion filled produces a printout. Hence, for each line
the program need send out characters (including spaces) only as far as the rightmost nonspace charac-
ter. The characters are printed in the order that they pass the print hammers, and a given character is
printed simultaneously in all positions that require it. In other words the drum has a row of 132 MS, a
row of Ns, etc.; all MS are printed together, ail Ns together, and so forth. The first character printed
depends only on the position of the drum when the print command is given.

4.6.3 CPIO-D Card Punch
The card punch handles standard 12-row, 80-column cards at speeds up to 100 cards per minute if all
80 columns are punched and 285 cards per minute if only 1 column is punched. The processor must
supply each column to the punch as 12 bits, and the program can generate this data by any procedure it
wishes: the standard DEC character representations and the translation from ASCII made by the
monitor are given in Appendix B of the Hardware Reference h4anuaf. Of course the data can simply be
in binary at three columns per word. (Punching rows 7 and 9 in the first column is the standard
procedure for indicating that the rest of the card cqntains binary data.)

A card is taken from the hopper only when the program supplies data for the first column. In the
interface is a 12-bit buffer to which the processor sends each column, but the punch has a 48-bit buffer,
and it punches four columns at a time from each set of four 12-bit bytes sent through the interface. The
program can send a card to the stacker after punching any number of columns.

4.6.4 XYlO Plotter
The XY 10 plotter control logic of the BAlO control or the TDIO control interfaces the DECsystem-10
to various plotters that use Cartesian coordinates. The models most frequently used are the Caicomp
563, 565, and 836 known as the XY IO-A, XY 10-B. and XY 10-C respectively. These are high accuracy
incremental digital plotters that produce quality ink plots of computer-generated data. Bidirectional
stepping motors provide individual increments of motion in either coordinate or both at once. The
program draws a continuous sequence of line segments by controlling the relative motion of pen and
paper with the pen lowered. It can also raise the pen for repositioning.. Plotter step size is specified at
the time of order.

Motion in l ‘y” is movement of the pen carriage along a pair of rods. Motion of “x” is movement of the
entire carriage-and-rod mechanism on a bed plotter or movement of the paper under the carriage on
the drum type. On a bed plotter the coordinate directions are the standard ones when viewing the
device from the front: positive “x” to the right, positive *‘y” to the back. The coordinate system on a
drum is in the standard orientation when the viewer is standing at the right side, unrolling the paper
from the drum with his left hand. In other words, positive **y” is movement of the pen from the right to
left across the drum, positive “x” is drum rotation downward at the front.

4.7 LPI00 LINE PRINTER SUBSYSTEM
The LPI00 line printer subsystem is composed of two hardware components: an LP07 line printer and
an LPI00 line printer controller and data source interface. Bach component is in a
cabinet and is equipped with the necessary power supplies and interconnecting cabling.

free-standing

The LP07 line printer is a high-performance, horizontal font motion line printer. It is designed for use
in data processing environments that require high-grade print quality, heavy print volumes, and high
reliability. The LP07 is an impact type, shaped (whole) character, 132-column line printer. It will
produce printed output at 1220 or 990 lines per minute using a 64-character set or 905 or 715 lines per
minute using a 9bcharacter set; the print speed is operator-selectable at the printer control panel. It
performs a single forms (paper) step in 12.5 ms and slews forms at up to 152.4 cm (60 inches) per
second when formatting vertically.

SYS 10/4-55

The LP07 line printer stores a stream of up to 132 characters in a print line buffer and, upon command
from the data source, it prints the contents of the buffer and advances the forms as specified by the
command. It signals the data source when it is ready for the next line of print data or forms motion
command.

The LP07 line printer uses a Charaband” as the horizontal font carrier, which is in front of the forms,
and 132 print hammers, which are behind the forms and ribbon, to produce the inked characters on the
front of the forms and carbon transfer characters on internal pages if multicopy forms are being used.
The Charaband retains the advantages of train printers and minimizes the problems of character set
rigidity, friction, and wear associated with other horizontal font techniques. To add convenience and
flexibility to the printing tasks, the Charaband is designed with two complete character sets - one on
each side. One side of the band contains &character EDP character sets, and the other side of the
band contains 96-character EDP character sets. Reversing the Charaband, to print with the second
character set font, is a procedure which takes an operator about a minute. Additional convenience and
cost reduction are attained by the individually field-replaceable character-type modules that do not
require the extensive realignment of train cartridges; this is a distinct advantage over chemically etched
characters on band printers where the entire band must be replaced when a character is damaged or
worn.

The LP07 line printer contains a direct access vertical format unit (DAVFU). The DAVFU uses a
format memory that is loaded from the data source. This relieves the operator from having to install a
format tape and eliminates the risk of running a print job with the incorrect format. The DAVFU
consists of a 143-word by 14-bit format memory, a line strobe assembly and check circuitry, a memory
parity generator and check circuitry, and control logic. The DAVFU may be loaded at any time data is
requested by the printer. Format memory data and control codes are transmitted to the printer via the
normal data lines using the standard demand/strobe communications. The DAVFU can control the
vertical movement of forms having up to a maximum of 143 lines. The DAVFU also permits 6 or 8
lines/inch print density under program control.

4.8 COMMUNICATIONS SUBSYSTIZMS
Communications subsystems facilitate the transfer of information in serial form between the computer
and one or more other points, usually some distance away. Such equipment can simply connect to
teletypewriters or other terminals located in a number of offices in a single plant, allowing engineers
and other personnel to communicate directly with a centrally located DECsystem-10, make a large
time-sharing facility available (through private lines or the standard telephone network) to many users
located over a large geographical area; or allow high-speed communication between a large com-
putation center and other computer installations located throughout the world.

Basically there are two types of serial communication. In a synchronous system, data is transmitted as
a continuous bit stream, beginning with a prearranged special sequence (protocol) through which the
receiver synchronizes to the stream. In an asynchronous system, all information is transmitted in
distinct characters bounded by start and stop bits. Running an asynchronous channel at its maximum
rate does result in a continuous bit stream, but each data character is still separated from the next by
stop and start bits, and the receiver synchronizes on each character separately. Communication at low
speed (up to 300 bits per second) is invariably asynchronous, whereas high-speed transmission (gener-
ally above 2500 bits per second) is usually synchronous. Either technique is used for medium speeds
(above 300 bits per second but within the capacity of a voice-band channel).

“Charaband IS a trademark of the Dataproducts Corporation.

The DC75NP communications subsystem services a number of synchronous lines and the DC76
communications subsystem services a number of asynchronous lines. Both subsystems are PDP-11
based systems and, by providing conversion of data between parallel and serial forms, act as message
concentrator and distributor systems. The DN87 communication subsystem is a universal commu-
nication subsystem that handles both asynchronous and synchronous lines. These systems connect to
the 1080 and 1090 I/O bus and core memory via the DLlO communications channel to facihtate high-
speed transfers.

The DN87S communication subsystem is a universal communication subsystem that can handle both
asynchronous and synchronous lmes. This system connects to the 1090 EBus via the DTEZO Ten-
Eleven Data Interface to facilitate high-speed transfers using the DTE2O’s byte transfer facility.

4.8.1 Communication Primer
Data Communications - the transmission of coded information between terminals and computers, or
between multiple computers - is the key capability inherent in all communications and computer
network systems.

Asynchronous devices transmit (or receive) a serial-bit stream consisting of a number of start bits, data
bits, and stop bits. The start and stop bits perform the functions of synchronizing the transmission of
each data character. Data is transmitted in the form of a string of characters, each of which has the
same predefined format (i.e., start bit, data bits, stop bits).

Asynchronous communication is generally employed for low-speed communications in applications
such as interactive systems used for program development, operator control of the system, data entry,
program entry, interactive problem solving, student instruction terminals, and information storage
and retrieval equipment. Local terminals (within 1500 feet) can usually be connected over dedicated
direct lines using current loop interfaces or modems. Remote terminals are connected using modems
over dedicated or dial-up telephone lines.

DECsystem-10 asynchronous communications equipment generally operates in the low-to-medium-
speed ranges from I 10 baud to 4800 baud. Equipment such as LA36 and VI’50 user terminals operate
on a character-by-character basis; each time a character is typed, it is transmitted. If characters are
typed at the rate of ten 1 l-bit characters per second, the effective transmission rate is 110 baud,
regardless of whether the line is 110 baud or 2400 baud.

Some terminals, such as certain types of CRTs, operate in a buffered mode. Here, characters are
buffered in the terminal until the entry is completed, at which time they are transmitted. Unlike unbuf-
fered terminals, which transmit at the same rate as characters are entered (as long as that rate does not
exceed the baud rate of the line), buffered terminals transmit the entire buffer at the full rated speed of
the line. Computers, like buffered terminals, also transmit at the rated speed of the line.

Due to the differences in effective data throughput, these differences between character-by-character
transmission and buffered character transmission are very important and must be considered when
designing communications and network systems using asynchronous data transmission.

Synchronous devices also transmit and receive a serial-bit stream over a communications line. How-
ever, the serial-bit stream does not include start and stop bits for each character. Instead, an entire
block of data is synchronized with a unique code which, when recognized, establishes character fram-
ing. This character framing is maintained by the receiver for the duration of the message.

SY s 10/4-57

In contrast with the character-by-character basis of asynchronous transmission, synchronous trans-
mission is on a message basis. Because of its higher speed and more eficient utilization of the transmis-
sion medium, large blocks of data are normally transmitted via synchronous transmission techniques..

Asynchronous transmission is employed to transmit data on a character-by-character basis; for mov-
ing large blocks of data, synchronous transmission is preferred. Asynchronous transmission, at 2400
baud, is limited to conveying no more than 240 eight-bit characters per second: synchronous transmis-
sion. at 2400 bits/second, can convey 300 eight-bit characters per second. This difference comes about
because synchronous transmission uses independent, block-oriented clock synchronization, while
asynchronous transmission reestablishes its character-oriented clock synchronization, with each char-
acter. Thus, each &bit character requires, minimally, one start bit and one stop bit.

The most important distinction between synchronous and asynchronous methods of transmitting data
is the means of error detection and recovery. Error detection for asynchronous devices is normally
accomplished by insertion of a parity bit into the data field of each character transmitted. Half-duplex
(local character echo) receivers will typically check this parity bit and notify the sender of the existence
of an error. In full-duplex systems, such as the DECsystem-10, the character echo is provided by the
receiving end (the DECsystem-IO) and transmission error detection and corrective action are thus the
responsibility of the sender, who simply compares what was sent with what the computer says it
received. This mode of error detection is highly efficient for interactive, terminal-oriented commu-
nications with buffered terminals and other computers. Synchronous communication normally uses a
block-oriented error detection technique, such as the cyclic redundancy check (CRC- 16) polynomial.
This technique is most efficient for block-oriented data transmission and for this reason, commu-
nications with buffered terminals and remote computers is normally accomplished using synchronous
data transmission.

Synchronous data transmission with intelligent terminals is generally carried on under control of a
communications protocol whose function is to define the format of the message - length, destination,
character size, data format of character (binary, ASCII, EBCDIC, etc.) and to detect and recover
errors in transmission. With synchronous protocol, the user is assured that the message is received
correctly without error. When the receiving end detects an error, it will take corrective action, nor-
mally by requesting the sender to retransmit the message. The protocol also ensures that each message
transmitted is saved until the receiver acknowledges error-free reception of the message. Typical syn-
chronous communications protocols are IBM Binary Synchronous (‘*BSC” or “Bisynch”), DEC-
synch, and DIGITAL Data Communications IMessage Protocol (DDCMP).

IBM Bisynch protocol is a half-duplex protocol supported by 360 and 370 systems for communications
with remote batch stations and computers. The DAS78 synchronous communications system supports
IBM 2780 Bisynch protocol, enabling the DECsystem-10 to emulate an IBM 2780 remote batch
station.

DECsynch is the traditional full-duplex communications protocol developed for support of remote
stations such as the DC72. DECsynch is implemented on the DECsystem-10 with the DSIO and the
DC75 synchronous communications system.

DDCMP is a message-oriented protocol for data communications between computers. Its purpose is
to assure the correct sequencing and data integrity of messages transmitted over data channels subject
to noise interference. It does this through sequence checking and message retransmission techniques.

DDC;MP is designed to operate over full- and half-duplex channels in point-to-point and multipoint
modes, independent of the bit width and other characteristics of the data channel. It is applicable to
multiple computer configurations such as computer networks. host/front-end processors, remote con-
centrators. and remote entry/exit systems.

SYS 10/4-58

The DECsystem-10 uses DDCMP for synchronous communications to DC72-NP, DN80-series, and
DAS92 remote stations and general-purpose remote computer systems via the DC75-NP, DN87,
DNS’IS, and DAS85 communications systems. Correct message sequencing is assured by numbering
all messages, i.e., the transmitting station (master) increments the number sent in successive messages
and the receiving stations (slave) check for the correct number on reception. The data integrity is
assured by the inclusion of a cyclic redundancy checking (CRC-16) algorithm which is checked by the
slave station, with notification of the check sent back to the master station.

4.8.2 DC76 Asynchronous Communication Subsystem
The DC76 asynchronous communication subsystem (Figure 4-I) provides a flexible, large-capacity
asynchronous data communications capability for the DECsystem- 10. The fully expanded DC76 sub-
system allows users to connect up to 512 asynchronous terminals with a wide choice of transmission
speeds, modem connections, and data codes.

The DC76 uses up to four PDP-I 1 processors for multiplexer control and front-end character han-
dling. The PDP-11 processors are interfaced directly to the DECsystem-10 main memory via the DLlO
communications channel.

Each PDP-11 processor can handle up to 128 asynchronous communications lines with a total aggre-
gate line speed of 1500 characters/second. The maximum speed of any line is 9600 baud. Input speeds
above 2400 baud are not supported by standard software. The DC76 provides for automatic baud rate
recognition among 110, 134.5, 150, and 300 baud lines. Other speeds from 50 to 9600 baud and split
(i.e., different) transmit and receive speeds can be obtained by monitor commands and/or by the
system management presetting line speeds using monitor initialization features.

The DC76 will support asynchronous terminals which may be 8-level ASCII terminals or 7-level termi-
nals compatible with the IBM 2741, using EBCDIC, APL or correspondence character sets. ASCII
terminals compatible with DIGITAL LT33, LT35, LA30, LA36, VT05, VT06, and VT50 are fully
supported. ASR units must include X-ON/X-OFF paper tape reader control for full support; the
support of cursor functions on displays is a function of the user program.

The DC76 does not support the “reader-run” control feature found on some terminals (LT33-D,
LT35-D). ASCII terminals should be &unit asynchronous code with one stop unit, except at 110 baud
where two units are assumed. The eighth data bit is transmitted to the terminal as even-character
parity, but is ignored on reception. Five- and six-level codes are accommodated by the hardware
(except six-level code with l-1/2 stop bits) but are not supported by standard software.

The DM 1 I-BB 16line interface group, in conjunction with the DC76 software, will support any mod-
em with EIA-RS232/CCITT V.24-signal interface and operating characteristics (control level sequenc-
ing) compatible with Bell System 103A or 103E modems, providing that the modem at the DC76 end
of the circuit is end-to-end compatible with the modem at the user terminal end of the circuit.

The DC76 software supports full-duplex (two-way simultaneous) line operation. Normal operating
mode consists of echoing most characters (certain control characters are echoed by the monitor). Full-
duplex with local copy is also supported. Two-way alternate simplex (the usual mode of Bell 202
modems) is not supported. However, the “almost two-way’* alternate operation of 2741 and 2741-
compatible terminais is supported over full-duplex lines. Polled operation (using Bell 103F-type mod-
ems) is not supported with either full-duplex or two-way alternate simplex modems. The “make-busy”
feature provided by Bell 103E, 113B, and other similar modems is not supported.

SYS 10/4-59

Due to the large and ever increasing number of data sets available, it is not practicai to list those which
will work satisfactorily with the DC76. The following data sets are among those supported by the
DM 1 l-B9 interface group:

1. Bell System 103A-type
2. Bell System 103E-type data station
3. Bell System 103F-type (but not polled or multipoint operation)
1. Bell System 113B-type data station
5. Bell System 202 full-duplex (4-wire) mode only
6. DIGITAL DFl I-BB-type full-duplex. receive-only integral modem.

The basic DC76 is capable of supporting up to three additional PDP- 11 multiplexer controllers which
may be any combination of DC75-NP and DC76 subsystems.

4.83 DC75-NP Synchronous Communications Subsystem
The DC75-NP synchronous communications subsystem (Figure 4-l) provides a highly reliable, high-
speed path between the central DECsystem-10 computer and DC72, DASSO-series or DAS92 remote
stations, remote terminals, and/or other computer systems. Transmission over high-speed synchro-
nous lines is on a message basis using DDCMP communications protocol.

The basic DC75-NP subsystem consists of a high-speed interface to the DECsystem-10 memory bus
(DL lo), a PDP-11 processor which serves as a multiplexer controller, and a multiple line synchronous
multiplexer (DS 11). The PDP- 1 I multiplexer controller packs and unpacks characters directly into the
DECsystem- 10 memory (via the DLlO) and can execute instructions from the DECsystem-10 memory
for bootstrap operations. The DS 11 multiple line synchronous interface handles 8 full-duplex lines and
can be expanded to handle up to 16 full-duplex lines. Standard system software supplied with the
DC75-NP operates in full-duplex mode using the DDCMP communications protocoi for commu-
nications with DC72, DASSO-series, or DAS92 remote stations. Up to four lines are supported by this
software.

The DC75-NP is recommended for applications involving up to 64 synchronous lines to DC72-NP,
DAS80-series, or DAS92 remote stations. Each multiplexer controiler handles a total line speed of up
to 40.8K bits/second including error checking, formatting, and line control. Individual lines may
operate at speeds up to 9600 bits/second.

The basic DC75-NP subsystem is capable of supporting up to three additional PDP-11 multiplexer
controllers. which may be any combination of DC75-NP, DC76, or DN87 subsystems. Compatible
modems include the Bell System 201, Bell System 203, Bell System 208, Rixon PM24, ICC Modem
2200. or anv synchronous modem which conforms to the Electronics Idustries Association RS-232B or
C Computer Interface Standards as weil as CCITT V.24 (white book) standards.

sYS 10/‘4-60

4.8.4 DNg7/DN87S Universal Synchronous/Asynchronous Front-End Subsystems
The latest DECsystem-IO data communications products are based on the DN87 universal synchro-
nous/asynchronous communications front-end subsystem. The DN87 is configurable in asynchro-
nous-only mode (up to 112 asynchronous lines), synchronous-only mode (up to 12 synchronous lines),
or with a mixture of synchronous and asynchronous lines in the same DN87. These three modes allow
the DN87 to be configured very cost effectively in a wide variety of customer specific configurations.
This great increase in flexibility without any significant increase in price is the essence of the DN87
communications subsystem.

The DN87 is capable of communicating with the DAS80 series remote stations, the DAS92 remote
station, and the DC72-NP remote station. These allow remote job entry, remote concentration of
interactive Teletype@ lines, or a combination of the two. The standard DN87/DAS80 series remotes
support complex topologies such as muitipathing, route-thru, and multiple host support. With DEC-
net-lo. it is possible to have a DECsystem-IO communicate with any DECnet system - for example
RSX- 11 M, RSX- 11 D, RSX- 11 S, IAS, RT- 11, RSTS/E, RTS-8, DECsystem-10.

The DN87S has the same functionality as a DN87 except that it is attached to the DECsystem-10 via
the DTElO interface rather than the DLlO. Up to three DN87Ss may be attached to the KLiO-based
DECsystem-10 via the DTElO interfaces. The DN87 and the DN87S require TOPS-10 version 6.03.

4.8.4.1 Asynchronous Interfaces - On an 8-line group basis, the DN87/DN87S is capable of termi-
nating 20 mA current loop, local EIA, or EIA with full modem control type of asynchronous
line/terminal interfaces. On an individual line basis, the DN87/DN87S asynchronous lines can be:

1. ASCII Teletype-compatible code or 2741 EBCDIC or correspondence code

7 i. Full-duplex with echoplex (i.e., echo generated by computer) or full-duplex with local copy
(simulated half-duplex)

3. Program-selectable line speeds of from 50 through 9600 baud

4. Split transmit/receive speeds

5. Automatically baud rate detected for 110, 134.5, 150, and 300 baud lines.

Some off-loading of the DECsystem-10 host is accomplished, in that the DN87/DN87S does the
majority of the echoing for asynchronous lines. It does not echo special characters, nor does it echo
when the user is in character-at-a-time mode (e.g., DDT - when an individual character can be a
command). Also the DN87/DN87S does fill character generation.

i Teletype IS a Registered trademark of the Teletype Corporation.

SYS10/4-61

4.8.4.2 Synchronous Interfaces - The DN87/DN87S is capable of terminating EIA and/or current-
loop type synchronous links. The line speeds may be 2400,4800,7200,9600, 19.2K, 384K, or 40.8K
baud on an individual line basis. These links operate only in full-duplex with simultaneous bidirection-
al transmission. The synchronous links use DDCMP protocol for error checking and correction and
for point-to-point link control.

These synchronous links communicate only with the DC72-NP remote station (DC72-NP is a soft-
ware-only upgrade of DC71 or DC72), the DAS80 series remote stations, the DAS92 remote station,
or another DN87/DN87S.

4.8.5 Communication Subsystem Components
A PDP-I 1 processor (minicomputer) is used in the asynchronous and synchronous communication
subsystems as a communications multiplexer and character handler. The basic components used in
these subsystems are for the most part the same as those used in the console processor subsystem.
(Refer to Subsection 4.3.1.) The basic components include:

2.
3.
4.
5.
6.
7.
8.
9.

10.
Il.

KC 11 Central Processor (DC75-NP)
KFI 1-X CLevel Auto Priority Interrupt Option (DC75-NP)
KDI I-A Central Processor (DC76, DN87, and DN87S)
KY 11 -D Programmer’s Console
KWI 1-L Line Frequency Clock
IMFI I-UP Memory (DC76. DN87, and DN87S)
MM1 l-UP Memory (DN87S)
MM 11-F Memory (DC75-NP)
KT 1 I-D Segmentation Option (DN87S) .

DLl l-C/E Asynchronous Line Interface
BC 1 I-A Unibus

in addition to these standard PDP-11 devices, the following devices are also used in the commu-
nication subsystems. They are:

I. KG 1 I-A XOR and CRC unit (DC75-NP. DN87, and DN87S)
1 _. DS 11 Muitipie Line Synchronous Interface (DC75-NP)
3. DH 11 Asynchronous 16-Line Multiplexer (DC76, DN87, and DN87S)
4. DMl I-BB Modem Control Option (DC76, DN87, and DN87S)
5. DQI 1 Double Buffered Synchronous Line Control (DN87 and DN87S)

The following paragraphs provide a brief description of these devices.

4.8.5.1 KGll-.A XOR and CRC Urdt (DC75-NP, DN87, and DN87S) - The KG1 1-A is used to com-
pute a cyclic redundancy check (CRC) or longitudinal redundancy check (LRC) for detecting errors in
serially transmitted data. It is used with a DSl 1 serial synchronous line interface to compute the block
check character(s) (BCC) appearing at the end of a block of data transmitted over a serial synchronous
line.

For received data. the characters are moved to the KG1 I-A and a BCC is computed for the data and
compared to the BCC received. If they are equal, the data is assumed to be correct and is accepted. If
they do not match, the message is not accepted and the data is iettansmitted.

When data is being transmitted. the BCC is generated by moving all the characters to the KG1 l-h.
The resulting BCC is transmitted at the end of the message.

Not all characters are included in the BCC. The exclusions will depend on the line protocol used.

SYS10/&62

The KG1 1-A. under program control, can compute the most popular CRC and LRC polynomials.
They are:

1. CRC-16 X’6 + X” + x2 + 1
2. CRC-12 X’Z + X” + x3 + x2 + x + 1
3. CRC-CCITT X’6 + X’2 + X’ + 1
4. LRC-8 x8+ 1
5 _. LRC-16 X’6 + 1

CRC- 16 is used for synchronous systems that employ 8-bit characters. It is used in IBM binary syn-
chronous systems when the transmission code is EBCDIC or &bit transparency. For IBM-compatible
systems, the message format is shown in Figure 4-6.

Figure 4-6 IBM Compatible Message Format

In the four examples shown in Figure 4-6, each character represents an 8-bit character. The first BCC
character is the least significant 8 bits of the BCC computed in the KG1 1-A. The STX is not included
in the BCC. The BCC includes the first text character through the ETB, ITB; or ETX. In examples 3
and 4, the second BBC begins with the character following the first BCC in the block (even if it is an
STX or DLE). The examples are for normal transmission. For transparent transmission,. the charac-
ters indicated by (*) in Figure 4-7 are not included in the BCC.

* * * *
DS DD D I b b’ D S DEbb

LT - t..t - LL - ,.xt - LTccLT -tat-LTcc

EX EE EBccEX EXcc

10- 1923

Figure 4-7 BCC Computation for Transparent Transmission

SYS 10/4-63

The DLE DLE sequence indicates that the second DLE is really data and not the control character and
is, therefore, included in the BCC. It may appear in text as often as that &bit representation is
required. Because the DLE ITB sequence takes the system out of the transparent mode, the DLE STX
sequence following the BCC is included in the next BCC and also puts the system back into the
transparent mode.

CRC-12 is used for 6-bit characters. It is compatible with IBM binary synchronous communications
(BSC) when the transmission code used is &bit transcode. The characters inciuded in or excluded from
the BCC are the same as for CRC- 16. The difference is only in the length of character (6 versus 8 bits).

CRC-CCITT is the standard polynomial used to compute BCC for European systems. The characters
included or excluded will depend on the line protocoi used for the system in which the KG1 1-A is used.

Some systems use only an 8-bit LRC on the characters. LRC-8 performs an exclusive OR on an 8-bit
or less character. The LRC is usually used in combination with a vertical redundancy check (VRC).
VRC is possible only when the characters are 7 bits or less plus one parity bit. LRC/VRC is used for
IBM BSC when the transmission code is ASCII. For IBM systems, the parity bit makes the character
contain an odd number of bits.

LRC-16 performs an exciusive OR on a ldbit or less character. It can be used to perform a word
exclusive OR, or to compute LRC for 12-bit characters transmitted via the DSI 1.

4.8.5.2 DSll Multiple Line Synchronous Interface (DCIS-NP) - The DSl 1 is a multiplexer interface
for up to 16 full- or half-duplex communication lines (modems) that operate in the synchronous mode.
The 16 modems can be a Bell 201, 203, or equivalent; they must meet the specifications set forth in
Electronic Industries Association (EIA) Standard RS-232B or C. In addition, a Bell 303 data set or
equivalent may be used.

Three configurations of the DS 1 I are available:

1. DS 1 I-A: Consists of the DS 11 logic only; no line control modules

, _. DS 1 I-BA: Consists of one M7110 line control module, and corresponding cable for a Bell
201, 203, or equivalent

3. DS I 1-BB: Consists of one M7110 line control module, and corresponding cable for a Bell
303 or equivalent.

The basic function of this interface is to perform serial-to-parallel and parallel-to-serial data transfers.
Parailel transfers to and from the DSl 1 interface transpire under program control; serial transfers
between the DS 11 and the modems are under DSl 1 control.

The maximum transfer rate between the present PDP-I 1 and a DSl 1 is 10,000 characters per.second
(6, 8. or 12 bits per character). Up to 16 full-duplex lines can be connected to a single DS 11, but their
total transfer rate cannot exceed 100 gs per character.

4.8.5.3 DH 11 Asynchronous 16-Line .Muitiplexer (DC76, DN87, and DN87S) - The DHl1 asynchro-
nous 16-line programmable multiplexer connects the PDP-I 1 with 16 asynchronous serial commu-
nications lines operating with individually programmable parameters. These parameters are:

I. Character Length: 5, 6, 7, or 8 bits.

1 A. Number of Stop Bits: 1 or 2 for 6, 7-, 8-bit characters: 1 or 1.5 for 5-bit characters.

SYS 1oi4-64

3. Parity Generation and Detection: odd, even, or none.

4. Operating Mode: half-duplex or full-duplex.

5. Transmitter Speed and Receiver Speed: 0, 50, 75, 110, 134.5, 150, 200, 300, 600, 1200, 1800,
2400, 4800, or 9600 baud plus Ext A, Ext B.

6. Breaks: May be detected or generated on each line.

The DH 1 1 multiplexer uses 16 double-buffered MOS/LSI receivers to assemble the incoming charac-
ters. An automatic scanner takes each received character and the line number and deposits that infor-
mation in a first-in, first-out buffer memory referred to as the SILO. The bottom of the SILO is a
register which is addressable from the Unibus.

The transmitter in the DHI 1 also uses double-buffered MOS/LSI units. They are loaded directly from
message tables in the PDP-I 1 memory by means of single-cycle direct memory transfers (NPR). The
current addresses and byte counts for each line’s message table are stored in semiconductor memories
located in the DHI 1. This reduces the Unibus time taken for the NPR transfers to one NPR cycle per
character transmitted. The NPR cycle used is lengthened slightly.

4.8.5.4 DMl I-BB Modem Control Unit (DC76, DN87, and DN87S) - The DMl I-BB modem control
unit is used with the DH 11 for modem control in dedicated and switched networks. Data is handled by
the DH 11 asynchronous 16~line multiplexer.

The DM 1 I-BB is a multiplexed modem control for 16 asynchronous modem interfaces. The unit
provides necessary control signals and levels to interface with Bell 103A/E/F/G/H, 202C/D, and
8 11 B modems or their equivalent. The interface levels are EIA/CCITT-compatible for data set oper-
ation. The DM I l-BB is ideally suited for applications where data is collected at remote locations and
forwarded to a controlling processor. Typical applications include numerical control, data acquisition,
physics, biomedical, time-sharing systems, and networks.

The modem control signals for up to 16 modems’are connected to the DMI I-BB through the DMl l-
AA distribution panel, which provides level conversion for all lines interfaced. Line adaption is
achieved at the distribution panel through the DMl I-DC option. The DM 1 l-DC unit is required for
modem control interfacing. Each DM 1 I-DC implements four EIA/CCITT lines including cabling for
modem interfacing. Four DMl l-DCs are necessary to handle the maximum 16 modems. Each of
themodem types that can be interfaced may be mixed over the 16 available lines.

The DM I I-BB scans the SEC RX, CLEAR TO SEND, CARRIER, and RING lines for each modem
line sequenced by a line counter in the logic, When a transition is detected on a line, for the modem line
designated by the line counter, an interrupt condition is generated. Providing interrupt enable and line
enable are programmed, the interrupt requests bus control through the interrupt control logic. Like-
wise, through the address selector logic, the processor sends SEC TX, CLEAR TO SEND, and TER-
MINAL READY to the modem designated by the line counter. The line counter enables the particular
transmit signal to be asserted on the line designated. The line counter is sequenced through the ring
counter, which is clocked internally (scan logic) and enabled by the program-controlled scan enable
and step conditions.

4.8.5.5 DQll Synchronous Line interface (DN87 and DN87S) - The DQI 1 is a high-speed, double-
buffered communications device designed to interface the PDP-I 1 processor to a serial-synchronous
communications channel. This interface allows the PDP-11 to be used for remote batch and remote
concentrator applications. With the Doll, the PDP-11 can also be used as a front-end, synchronous-
line controller to handle remote and local synchronous terminals.

SY S 1014-65

Transmit and receive data transfers between the PDP- 11 Unibus and the DQ I 1 are handled as non-
processor requests (NPR). These are direct memory or device access data transfers without processor
supervision. As an NPR device, the DQI 1 provides extremely fast access to the PDP-11 Unibus and
can transfer data at exceptionally high rates once it gains control. The PDP-11 processor state is not
affected by NPR transfers, since they occur on a cycle-steal basis.

4.8.6 DC72-NP Remote Station
The DC72-NP remote station and options (Figure 4-8) make DECsystem-10 peripherals available to
any remote site that can be connected to a DECsystem-10 by a leased synchronous communication
line. The remote peripherals supported include 1 lo- to 2400-baud asynchronous ASCII terminals (e.g.,
the LA30 DECwriter, VT05 video display terminal, RTOl and RT02 DEClink data entry terminals),
line printers, and card readers. These remote peripherals are functionally equivalent to their local
counterparts.

CENTRALCOHPUTER

X72-A.0 OR C
CONTROL UNIT

UP TO .3
ASYNCWRONOUS

TERMINALS

Figure 4-g DC72-NP Remote Station

The DC72-NP remote’station which is a PDP-&based hardware/software subsystem provides remote
users of a DECsystem- 10 with a full set of user-oriented input/output peripherals at prices comparable
to a conventional remote job entry (RJE) terminal. In addition to the RJE capability, the DC72
provides an interactive terminal for operator control, dedicated applications, and general interactive
use. The DC72-A. B, and C basic stations include a IO-character/second operator console. a 300-
card/minute, reader, and a 132-column iine printer.

The DC72-A features a 16Scharacter/second, 64-character-set printer which gives high-quality dot
matrix printing and a 2-channel vertical-format control.

SYS lOi66

The DC72-B has a faster drum printer with a &-character set. The speed of this printer is 300 132-
column lines per minute. The vertical format unit is a single-channel unit switch-selectabie for page
sizes of 3, 3-l/2, 4, 5-l/2. 6, 7, 8. 8-l/2, 11, 12. and 14 inches.

The DC72-C is similar to the DC72-B but offers a 96-character set line printer that includes lowercase
characters and additional symbols; the printing speed is 230 132~column lines/minute.

The DC72-L asynchronous 8-line group is used to add eight asynchronous terminal interfaces to any
of the DC72 series. The DC72-L enables line speed to be individually selected for each line. Terminal
output rates of 110 to 2400 baud and transmission rates 6f 110 to 300 baud are supported; 134.5-baud
terminals of the IBM 2741 types are not supported on the DC72-NP. User programs which use cursor
movement commands must supply fill characters at 600 baud and above. Direct cursor addressing is
not possible through DC72 remote stations above 300 baud.

Two DC72-Ls (16 lines maximum) can be added to each DC72-A, B, or C. Terminals may be con-
nected to the DC72-L either locally using 20 mA current loops or through EIA RS-232C or CCITT
V.24 (white book) standard asynchronous modems. Modem control is not available on the DC72-L,
however.

The supporting software for the DC72-NP is an evolution of the DC71 software ftrst delivered in 1971.
It takes full advantage of full-duplex communication with the DECsystem-10 to run both the reader
and line printer simultaneously, while at the same time providing good interactive response for up to
16 asynchronous terminals.

For communication with the DC75-NP, the DC72-NP uses DDCMP communication protocol. Com-
patible modems include the Bell System 201, Bell System 203, Bell System 208, Rixon PM24, ICC
Modem 2200. or any synchronous modem which conforms to the Electronics Industries Association
RS-232B or C Computer Interface Standards as well as CCITT V.24 (white book) standards.

4.8.7 DN80 (DAS80) -Series Remote Station
The DN80-series remote stations (Figure 4-9) are PDP-1 l-based stations designed to provide the
remote user with access to the full capabilities of the DECsystem-10, as well as the capability to expand
from a small remote batch station (DN80) or a small remote concentrator for interactive asynchronous
terminals (DN81), to a fully expanded remote station (DN82).

The DN80-series remote stations provide a modular approach to the support of remote peripherals
and asynchronous terminals for the DECsystem-10. The DN80-A remote batch station provides card
reader and line printer support to any site that can be connected to the DECsystem-10 via dedicated,
full-duplex synchronous communications channels. A basic batch. station configuration (DNSO-A)
includes a 300-card/minute card reader, 300-line/minute, 64-EDP-character printer, and a single syn-
chronous line controller. The basic remote concentrator (DN81-A) supports up to 16 asynchronous
terminals such as the LA36, VTSO, VT52, or similar devices. All basic DN80-series stations include a
local LA36 DECwriter II that can be used as an interactive terminal for job submission and control or
for diagnostic/maintenance support,

The DN81 remote concentrator provides concentration for up to 32 interactive asnchronous terminals
to a DECsystem-10 host processor. It enables a significant savings in line use costs by using a single-
leased, private, full-duplex synchronous communication line to a DECsystem-10 instead of one asych-
ronous line per terminal. User terminals can employ either local or remote asynchronous commu-
nications lines to connect to the DN81 concentrator, which in turn are connected to the remote
DECsystem-10 with a single high-speed synchronous communications line. Provisions to connect the
DN81 to both a primary or alternate DECsystem-10 host processor can be added as options.

SYS 10/4-67

CARDREAOER

LEASED OR
PRIVATE LINES

TELEPRINTER

LINE PRINTER

,

(ON821

CONTROLLER
DECSYSTEM -10

S-2OmA
CURRENT

LOOP LOCAL
LINES

8 LOCAL 8 EIA LINES 8 EIA LINES
EIA LINES WITH MODEM WITH MODEM
INCLUOES CONTROL CONTROL

0-+4312-A (MODEMS NOT (INCLUOES 8
NULL MOOEMS INCLUDED) AUTO-INS

MOOEMSI

Figure 4-9 DN80-Series Remote Station

A basic DNSI includes one 16-line asynchronous control group (a maximum of two are supported).
Lines are activated in groups of eight using either the DNSl-FA, FB, FC, or FD line groups. The
DN8 1 hardware and software support of asynchronous terminals is equivalent to that provided by the
DC76 local asynchronous concentrator, except that total throughput is limited to 960
characters/second.

A basic DN82 remote station combines, in a single assembly, the functions of a DNSO remote batch
station and a DN8 1 remote concentrator. It can be field installed by adding the appropriate equipment
options to a DN80-A or DN81-A.

All of the DN80 series remote stations use the new DDCMP synchronous communications protocol to
support fuil-duplex communications with the DECsystem-10 via a leased voice grade channel or pri-
vate j-wire synchronous lines. DDCMP provides a hiqhly efficient, full-duplex, simultaneous bidirec-
tional transmission of data to make optimum use of available communications-line bandwidth.
DDCMP uses a high reliability CRC-16 hardware-implemented feature for automatic error checking
and an efficient method for message retransmission in case of line errors.

SYS10/4-68

Connection between a DN80-series remote station and a DECsystem-10 primary or alternate host
computer system requires that the host processor(s) be equipped with a DC75-NP, DN85, DN87, or
DN87S synchronous communications front-end system. Older models of DECsystem-10 host proces-
sors may be equipped with DC75 synchronous communications systems that have been upgraded with
a DC75-NP software/hardware option. The maximum synchronous line speed that can be supported
by a DN80 series station is 9600 bits per second. Additional equipment facilities needed to complete
the connection between the DECsystem-10 host processor and the DN80 series remote station(s) must
include either a leased full-duplex data transmission facility (supplied by telecommunication common
carriers) or customer-owned or -leased modems and compatible transmission facilities. If the DN80
series remote station is within 15 meters (50 feet) of the host DECsystem-10 communications front-
end, a DN83-A synchronous null modem may be used in place of the common carrier or customer-
owned data transmission facility.

Typical compatible synchronous modems that can be used include the Bell System 201, 208, 209. or
equivalent ICC modems, or any synchronous modem whose terminal interface conforms to the Elec-
tronics Industries Association RS-232B or C (Computer Interface Standards) as well as CCITT (Vol.
VIII. Green Book, V.24) standards.

4.8.8 DAS92 Remote Station
The DAS92 remote station (Figure 4-10) is a low-cost, PDP-8/A-based remote station designed to
provide the remote user with access to the full capabilities of the DECsystem-10 while offering the
flexibility of remote terminal concentration and remote batch functionality in the same basic unit.

SYNCHRONOUS MODEM
I v 9600 BAUD LEASED OR PRIVATE LINE

DAS92-E 4 -LINE DAS92-E 4-LINE
ASINC MULTIPLEXER ASINC MULTtPLEXER

1 (DA92jP.y.W
LINE PRINTER*

, w,

*MAXIMUM OF ONE PER DAS92
no-25,s

Figure 4- 10 DAS92 Remote Station (Typical Configuration)

SYS10/4-69

The DAS92 combines in a singie assembly the basic unit and expansion capability. Typical con-
figurations include a 4-, 8-, 12-, or 164ine concentrator: a remote batch station with a card reader and
line printer; a remote station with up to eight asynchronous lines und a card reader and line printer; or
a remote station with up to 12 lines of concentration and a card reader or line printer.

The DAS92 remote concentrator configuration provides concentration for up to 16 asynchronous
terminals for the DECsystem-10. It enables a significant savings in line cost by using a single leased or
private full-duplex synchronous communication line to the DECsystem-10 instead of one asynchro-
nous line per terminal. A 9600-baud synchronous tine is required to attain desirable throughput per-
formance. User terminals can employ either local or remote communication lines to connect to the
DAS92. One line out of each four-line group offers full modem control capability. The other three
lines should be used on leased or private lines for remote terminal applications. If dial-up through a
switched network is required, these lines must be connected through two Beil 103A or equivalent
modems, with the “long space disconnect’* option installed. On these lines it is not possible to run Be11
202 type modems in half-duplex or switched networks, but Bell type 202 modems or their equivalent
may be run full-duplex on leased lines. Each DAS92 asynchronous line group has complete flexibiiity
for interfacing to EIA or local (20 mA) lines. Both plug types are provided for each line and switch
settings enable the appropriate drivers.

The DAS92 remote station is housed in an attractive walnut-topped desk and comes with a VT52
operator/diagnostic console and desk space for an optional card reader. The desk is mounted of
casters for transportability and has a pull-down rear door for easy access to distribution panels. Bach
DAS92 has 16K of core memory, a ROM for downline loading of system software and diagnostics,
power fail and auto restart features, a programmer’s console, and a synchronous line controller that
can interface to Bell 200 series synchronous modems or their equivalents.

The DAS92 provides an effective throughput of approximately 750 characters/second when commu-
nicating over a 9600 baud synchronous line.

SYS10/4-70

SECTION 5
THE SOFTWARE

5.1 RESIDENT OPERATING SYSTEM
The resident operating system (DECsystem-10 total operating system - TOPS-lo) is made up of a
number of separate and somewhat independent parts, or routines (Figure 5-l). Some of these routines
are cyclic in nature and are repeated at every system clock interrupt (tick) to ensure that every user of
that computing system is receiving his requested services. These cyclic routines are:

1. The command processor, or decoder
2. The scheduler
3. The swapper
4. The control routine.

The command decoder is responsible for interpreting commands typed by the user on his terminal and
passing them to the appropriate system program or routine. The scheduler decides which user is to run
in the interval between the clock interrupts, allocates sharable system resources, and saves and restores
conditions needed to start a program interrupt by the clock. The swapper rotates user jobs between
secondary memory (usually disk or drum) and core memory after deciding which jobs should be in
core but are not. These routines constitute the part of the operating system that allows many jobs to be
operating simultaneously.

The noncyclic routines of the operating system are evoked only by user programs and are responsible
for providing these programs with the services available through the operating system. These routines
are:

1. The UUO handler
7 _. The input/output routines
3. The ftle handler.

The UUO handler is the means by which the user program communicates with the operating system in
order to have a service performed. Communication is by way of programmed operators (also known as
UUOs) contained in the user program which, when executed, go to the operating system for process-
ing. The input/output routines are the routines responsible for directing data transfers between per-
ipheral devices and user programs in core memory. These routines are evoked through the UUO
handler, thus saving the user the detailed programming needed to control peripheral devices. The file
handier adds permanent user storage to the computing system by allowing users to store named pro-
grams and data as files.

SYS10/5-1

ROTATING
MEMORY

I

1
ROTATI NC
MEMORY -

INPUT-OUTPUT

I ’

ROUTINES

--

C0h4h1~~0
DECOOER

I

SWAPPER

SERVICE I
ROUTINE SCHEDULER

AN0
_ RESOURCE

ALLOCATOR

CYCLIC
ROUTINES

Figure 5-1 The Resident Operating System

SYS10/5-2

5.1.1 Command Decoder
The command decoder is the communications link between the user at his terminal and the operating
system. Because all the requests for system resources are initiated via the command decoder, it is the
most visible part of the system to each user. When the user types commands and/or requests on his
terminal, the characters are stored in an input buffer in the operating system. The command decoder
examines these characters in the buffer, checks them for correct syntax, and evokes the system pro-
gram as specified by the command.

On each clock interrupt, control is given to the command decoder to interpret and process one com-
mand in the input buffer. The command appearing in the input buffer is matched with the table of
valid commands accepted by the operating system. A match occurs if the command typed in exactly
matches a command stored in the system, or if the characters typed in match the beginning characters
of only one command. When the match is successful, the legality information (or flags) associated with
the command is checked to see if the command can be performed immediately. For instance, a com-
mand can be delayed if the job is swapped out to the disk and the command requires that the job be
resident in core; the command is executed on a later clock interrupt when the job is back in core. If all
conditions as specified by the legality flags are met, control is passed to the appropriate program.

5.1.2 Scheduler
The DECsystem-10 is a multiprogramming system, i.e., it allows several user jobs to reside in core
simultaneously and to operate sequentially. It is then the job of the scheduler to decide which jobs
should run at any given time. In addition to the multiprogramming feature, the DECsystem-10
employs a swapping technique whereby jobs can exist on an external storage device (e.g., disk or drum)
as well as in core. Therefore, the scheduler decides not only what job is to be run next but also when a
job is to be swapped out onto the disk or drum and later brought back into core.

All jobs in the system are retained in ordered groupings called queues. These queues have various
priorities that reflect the status of each job at any given moment. The queue in which a job is placed
depends on the system resource for which it is waiting and, because a job can wait for only one
resource at a time, it can be in only one queue at a time. Several of the possible queues in the system
are:

1. Run queues for jobs waiting for, or jobs in execution

2. I/O wait queues for jobs waiting for data transfers to be completed

3. I/O wait satisfied queues for jobs waiting to run after data transfers have been completed

4. Resource wait queues for jobs waiting for some system resource

5. Null queue for all numbers that are not currently being used.

The job’s position within certain queues determines the priority of the job with respect to other jobs in
the same queue. For example, if a job is first in the queue for a sharable device, it has the highest
priority for the device when it becomes available. However, if a job is in an I/O wait queue, it remains
in the queue until the I/O is completed. Therefore, in an I/O wait queue, the job’s position has no
significance. The status of a job is changed each time it is placed into a different queue.

SYS 10/5-3

The scheduling of jobs into different queues is governed by the system clock. This clock divides the
time for the central processor into sixtieths of a second. When the clock ticks, the scheduler decides
which job will run during the next cycle. If the currently running job is the null job and a higher
priority job (any job) becomes ready to run, it will immediately run. If the currently running job is not
the null job and a high priority (HP0 real-time) job becomes runnable, it will run at the next clock tick.
Finally if a job just becoming runnable is not an HPQ job but is of higher priority than the current job,
it will only preempt the current job when the applicable quantum run time has expired.

Each job, when it is assigned to run, is given a time slice. When the time slice expires for the job, the
clock notifies the central processor and scheduling is performed. The job whose time slice just expired
is moved into another run queue, and the scheduler selects another job to run in the next time slice.

Scheduling may be forced before the time slice has expired if the currently running job reaches a point
at which it cannot immediately continue. Whenever an operating system routine discovers that it
cannot complete a function requested by the job (e.g., it is waiting for I/O to complete or the job needs
a device which it currently does not have), it calls the scheduler so that another job can be selected to
run. The job that was stopped is then requested and is scheduled to be run when the function it
requested can be completed. For example, when the currently running job begins input from a disk, it
is placed into the I/O wait queue, and the input is begun. A second job is scheduled to run while the
input of the first job proceeds. If the second job then decides to access a disk, it is stopped because the
disk control is busy, and it is placed in the queue for jobs waiting to access the disk control. A third job
is set to run. The input operation of the first job finishes, freeing the disk control for the second job.
The I/O operation of the second job is initiated, and the job is transferred from the device wait queue
to the I/O wait queue. The first job is transferred from the I/O wait queue to the highest priority run
queue. This permits the first job to preempt the running of the third job. When the time slice of the first
job becomes zero, it is moved into the second run queue, and the third job runs again until the second
job completes its I/O operation.

In addition, data transfers use the scheduler to permit the user to overlap computation with data
transmission. In unbuffered data modes, the user supplies an address of a command list containing
pointers to locations in his area to and from which data is to be transferred. When the transfer is
initiated, the job is scheduled into an I/O wait queue where it remains until the device signals the
scheduler that the entire transfer has been completed.

In buffered modes, each buffer contains information to prevent the user and the device from using the
same buffer at the same time. If the user requires the buffer currently being used by the device as his
next buffer, the user’s job is scheduled into an I/O wait queue. When the device finishes using the
buffer, the device calls the scheduler to reactivate the job.

5.1.3 Swapper
The swapper is responsible for keeping in core the jobs most likely to be runnable. It determines if a
job should be in core by scanning the various queues. in which a job may be. If the swapper decides that
a job should be brought into core, it may have to take another job already in core and transfer it to
secondary memory. Therefore, the swapper is not only responsible for bringing a job mto core but is
also responsible for selecting the job to be swapped out.

A job is swapped into secondary memory for one of two reasons:

1. A job that is more eligible to run needs to be swapped in and there is not enough room in
core for both jobs

1 /-. The job needs to expand its core size and there is not enough core space to do so.

SYS IO/54

-

If the latter case is true, .the job must be swapped out and then swapped in later with the new allocation
of core.

The swapper checks periodically to see if a job should be swapped in. If there is no such job, then it
checks to see if a job is requesting more core. If there is no job wishing to expand its size, then the
swapper does nothing further and relinquishes control of the processor until the next clock tick.

5.1.4 Control Routine
The control routine (labeled CLOCKl) calls for execution of major system modules to ensure that
every user of the computing system gets needed services. CLOCK1 is run every time the real time clock
interrupts the system (50 or 60 times per second which is dependent on the power line frequency).
Some of the responsibilities that are typical of CLOCK1 include:

1. Saving the state of the current job
7 _. Time accounting
3. Processing of timing requests
4. Context switching
5. Start-up of next user
6. Reinstatement of current user
7. Call to other cyclical control routines.

5.1.5 UUO Handler
The UUO handler is responsible for accepting requests for services available through the operating
system. These requests are made by the user program via software-implemented instructions known as
programmed operators, or UUOs. The various services obtainable by the user program include:

1. Communicating with the I/O devices on the computing system, including connecting and
responding to any special devices that may be desired on the system for real-time
programming.

7 &. Receiving or changing information concerning either the computing system as a whole or
the individual program.

3. Altering the operation of the computing system as it concerns the user job, such as con-
trolling execution by trapping or suspending, or controlling core memory by locking.

4. Communicating and transferring control bet&en user programs.

The UUO handler is the only means by which a user program can give control to the operating system
in order to have a service performed. Contained in the user program are operation codes which, when
executed, cause the hardware to transfer control to the UUO handler for processing. This routine
obtains its arguments from the user program. The core location at which the UUO operation was
executed is then remembered. After the UUO request has been processed, control is returned to the
user program at the first or second instruction following the UUO. In this way, the software supple-
ments the hardware by providing services. that are evoked through the execution of a single core
location just as the hardware services are evoked.

5.1.6 Device Service Routines
I/O programming in the DECsystem-10 is highly convenient for the user because all of the bur-
densome details of programming are performed by the operating system. The user informs the oper-
ating system of his requirements for I/O by means of UUOs contained in his program. The actual
device service routines needed are then called by the UUO handler.

SYS 10/5-s

Since the operating system channels communication between the user program and the device. the user
does not need to know all the peculiarities of each device on the system. In fact, the user program can
be written in a similar manner for all devices. The operating system will ignore, without returning an
error message, operations that are not pertinent to the device being used. Thus, a terminal file and a
disk file can be processed identically by the user program. In addition, user programs can be written to
be independent of any particular device. The operating system allows the user program to specify a
logical device name, which can be associated with any physical device at the time the program is to be
executed. Because of this feature. a program that is coded to use a specific device does not need to be
rewritten if the device is unavailable. The device can be designated as a logical device name and
assigned to an available physical device with one command to the operating system.

Data is transmitted between the device and the user program in one of two methods: unbuffered mode
or buffered mode. With unbuffered data modes the user in his program supplies the device with an
address, which is the beginning of a command list. Essentially, this command list contains pointers
specifying areas to the user’s allocated core to or from which data is to be transferred. The user
program then waits until the operating system signals that the entire command list has been processed.
Therefore, during the data transfer, the user program is idly waiting for the transfer to be completed.

Data transfers in buffered mode utilize a ring of buffers set up in the user’s core area. Buffered trans-
fers allow the user program and the operating system’s I/O routines to operate asvnchronousiy. As the
user program uses one buffer, the operating system processes another one by filling or emptying it as
interrupts occur from the device. To prevent the user program and the operating system from using the
same buffer at the same time, each buffer has a use bit that designates who is using the buffer. Buffered
data transfers are faster than unbuffered transfers because the user program and the operating system
can be working together in processing the data.

Several steps must be followed by the user program in order for the operating system to have the
information it needs to control that data transfer. Each step is indicated to the operating system with
one programmed operator. In the first step, the specific device to be used in the data transfer must be
selected and linked to the user program with one of the software I/O channels available to the user’s
job (OPEN or INIT programmed operators). This device remains associated with the software I/O
channel until it is disassociated from it (via a programmed operator) or a second device is associated
with the same channel. In addition to specifying the I/O channel and the device name, the user pro-
gram can supply an initial file status, which includes the type of data transfer to be used with the device
(e.g.. ASCII. binary), and the location of the headers to be used in buffered data transfers. The oper-
ating system stores information in these headers when the user program executes programmed oper-
ators, and the user program obtains from these headers all the information needed to fill or empty
buffers.

Another set of programmed operators (INBUF and OUTBUF) establishes the actual buffers to be
used for input and output. This procedure is not necessary if the user is satisfied to accept the two
buffers automatically set up for him by the operating system.

The next step is to select the tile that the user program will be using when reading or writing data. This
group of operators (LOOKUP and E?4TER) is not required for devices that are not file-structured
(e.g.. card reader, magnetic tape, paper tape punch). However, if used, they will be ignored, thus
allowing file-structured devices to be substituted for non-file-structured devices without the user rew-
riting the program.

The third step is to perform the data transmission between the user program and the tile (IN, INPUT,
OUT. and OUTPUT). When the data has been transmitted to either the user program on input or the
file on output. the file must be closed (CLOSE, fourth step) and the device released from the channel
(RELEASE. fifth step). This same sequence of programmed operators is performed for all devices:
therefore. the I,‘0 system is truly device-independent because the user program does not have to be
changed every time a different device is used.

SYSlO15-6

In addition to reading or writing data to the standard I/O devices, provisions are included in the
operating system for using the terminal for I/O during the execution of the user program. This capabil-
ity is also obtained through programmed operators. As the user program is running, it can pause to
accept input from or to type output to the terminal. The operating system does all buffering for the
user, thus saving him programming time. This method of terminal I/O provides the user with a con-
venient way of interacting with his running program.

5.1.7 Summary
In summary, the resident operating system supervises user jobs and provides various services to these
jobs. It acts as an operator by performing specific functions in response to specific events which occur
within the system. Many functions are performed in accordance with a periodic event, the system clock
interrupt. Other functions are responded to in accordance with the action of the user program.

5.2 COMMAND CONTROL LANGUAGE
By allowing resources to be shared among users, the time-sharing environment utilizes processor time
and system resources that are wasted in single-user systems. Users are not restricted to a small set of
system resources, but instead are provided with the full variety of facilities. By means of his terminal,
the user has on-line access to most of the system’s features. This on-line access is available through the
operating system command control language, which is the means by which the time-sharing user
communicates with the operating system.

Through the command language, the user controls the running of a task, or job, to achieve the desired
results: create, edit, and delete files; start, suspend, and terminate a job; compile, execute, and debug a
program. In addition, since GALAXY batch software accepts the same command language as the
time-sharing software, any user can enter a program into the batch run queue. Thus, any time-sharing
terminal can act as a remote job entry terminal.

When the user types commands and/or rquests on his terminal, the characters are stored in an input
buffer in the operating system. The command decoder examines these characters in the buffer, checks
them for correct syntax, and invokes the system program or user program as specified by the
command.

On each clock interrupt, control is given to the command decoder to interpret and process one com-
mand in the input buffer. The command appearing in the input buffer is matched with the table.of
valid commands accepted by the operating system. A match occurs if the command typed in exactly
matches a command stored in the system, or if the characters typed in match the beginning characters
of only one command (i.e., constitute a unique abbreviation). When the match is successful, the legal-
ity information (or flags) associated with the command is checked to see if the command can be
performed immediately. For instance, a command must be delayed if the job is swapped out to the disk
and the command requires that the job be resident in core: the command is executed on a later clock
interrupt when the job is back in core. If all conditions as specified by the legality flags are met, control
is passed to the appropriate program.

5.3 FILE SYSTEM
Mass storage devices, such as disks and drums, cannot be requested for a user’s exclusive use, but must
be shared among all users. (An exception is the assignment of a disk structure to a single user, i.e., a
“private” disk structure.) Because many users share these devices, the operating system must ensure
independence among the users; one user’s actions must not affect the activities of another unless the
users desire to work together. To guarantee such independence, the operating system provides a file
system for disks, disk packs, drums, and DECtapes. Each user’s data is organized into one or more
128-word blocks called files. The user gives a name to each of his files. and the list of these names is
kept by the operating system for eachiser. The operating system is then responsible for protecting
each user’s file storage from intrusion by unauthorized users.

SYS 10/5-7

In addition to allowing independent file storage for users, the operating system permits sharing of files
among individual users. For example, .programmers working on the same project can share the same
data in order to complete a project without duplication of effort. The operating system lets the user
specify protection codes, or rights, for his files. These codes designate if other users may read the file,
and after access, if the files can be modified in any way. A new facility called file DAEMON allows the
user to specifically permit or deny access to any tile, or set of files, for specific users. The user may also
create a log of accesses to his tiies for later review, proprietary program billing, etc.

The user of the DECsystem- 10 is not required to preallocate file storage: the operating system allocates
and deallocates the tile storage space dynamically on demand. Not only is this convenient for the user
because he does not have to worry about allocation when creating files, but this feature also conserves
storage by preventing large portions of storage from being unnecessarily tied up. However, a large
batch job which needs to preallocate space may do so.

Files are assigned protection levels for each of three classes of users: self; users with a common project
number: and all users. Each user class may be assigned a different access priviiege; there are eight levels
in each of the three user classes (Table 5-l).

Table 5-l
File Protection Scheme

Protection Level
I

Access Code I Access Privileges

Greatest Protection

1
Least Protection

1

0

No access privileges
EXECUTE ONLY
READ, EXECUTE
APPEND, READ, EXECUTE
UPDATE, APPEND, READ, EXECUTE
WRITE, UPDATE, APPEND, READ,
EXECUTE
RENAME, WRITE, UPDATE, APPEND,
READ, EXECUTE
CHANGE PROTECTION, RENAME, WRITE,
UPDATE, APPEND, READ, EXECUTE

In addition the file DAEMON is called on all access failures if the owner protection is 4, 5, 6, 7. . . .
Note that the protection used by the system to determine access right after a file DAEMON call is
provided by the file DAEMON.

5.3-l File Handler
The disk file handler manages user and system data: thus, this data can be stored, retrieved, protected,
and/or shared among other users of the computing system. All information in the system is stored as
named files in a uniform and consistent fashion, thus allowing the information to be accessed by name
instead of by physical disk addresses. Therefore, to reference a file, the user does not need to know
where the file is physically located. A named file is uniquely identified in the system by a tilename and
extension. an ordered list of directory names (UFDs and SFDs) which identify the owner of the file,
and a tile structure name which identifies the group of disk units containing the file.

sys 10/5-a

Usually a complete disk system is composed of many disk units of the same and/or different types.
Therefore, the disk system consists of one or more file structures - a logical arrangement of files on one
or more disk units of the same type. This method of file storage allows the user to designate which disk
unit of the file structure he wishes to use when storing his files. Each tile structure is logically complete
and is the smallest section of file memory that can be removed from the system without disturbing
other units in other file structures. All pointers to areas in a file structure are by way of logical block
numbers rather than physical disk addresses; there are no pointers to areas in other file structures,
thereby allowing the tile structure to be removed.

5.3.2 File Structures
A file structure contains two types of files: the data files that physically contain the stored data or
programs, and the directory files that contain pointers to the data files. Included in these directory files
are master file directories, user file directories, and subtile directories. Each file structure has one
master file directory (MFD). This directory file is the master list of all the users of the file structure.
The entries contained in the MFD are the names of all the user file directories on the file structure.
Each user with access to the file structure has a user file directory (UFD) that contains the names of ail
his files on that file structure; therefore, there are many UFDs on each file structure. As an entry in the
user tile directory, the user can include another type of directory file, a subfile directory (SFD). The
subfile directory is similar to the other types of directory files in that it contains as entries the names of
all files within that subdirectory. This third level of directory allows groups of files belonging to the
same user to be separate from each other. This is useful when organizing a large number of files
according to function. In addition, subfiie directories allow nonconflicting simultaneous runs of the
same program using the same filenames.

As long as the files are in different subfile directories, they are unique. Subfile directories exist as files
pointed to by the user file directory, and can be nested to the depth specified by the installation at
system generation time.

5.33 File Protection
All disks are composed of two parts: data and information used to retrieve data. The retrieval part of
the file contains the pointers to the entire file, and is stored in two distinct locations on the device and
accessed separately from the data. System reliability is increased with this method because the proba-
bility of destroying the retrieval information is reduced; system performance is improved because the
number of positionings needed for random access methods is reduced. The storing of retrieval infor-
mation is the same for both sequential and random access files. Thus a tile can be created sequentially
and later read randomly, or vice versa, without any data conversion.

One section of the retrieval information is used to specify the protection associated with the file. This
protection is necessary because disk storage is shared among all users, each of whom may desire to
share files with, or prevent files from being written, read, or deleted by, other users. These protection
codes are assigned by the user when the file is created and designate the users who have privileges to
access the file.

5.3.4 Disk Quotas
Disk quotas are associated with each user (each project-programmer number) on each file structure in
order to limit the amount of information that can be stored in the UFD of a particular tile structure.
When the user gains access to the computing system, he automatically begins using his logged in quota.
This quota is not a guaranteed amount of space, and the user must compete with other users for it.
When the user leaves the computing system, he must be within his logged out quota. This quota is the
amount of disk storage space that the user is allowed to maintain when he is not using the system and is
enforced by the system program that is used in logging off the system. Quotas are determined by the
individual installation and are, therefore, used to ration disk resources in a predetermined manner.

SYS10/5-9

To the user, a file structure is like a device, i.e., a tile structure name or set of file structure names can
be used as the device name in command strings or UUO tails to the operating system. Although the
file structures or the units composing the file structures can be specified by their actual names, most
users specify a general, or generic, name (DSK) which will cause the operating system to select the
appropriate tile structure. The appropriate file structure is determined by a job search list. Each job
has its own job search list with the file structure names in the order in which they are to be accessed
when the generic name is specified as the device. This search list is established by LOGIN and thus
each user has a UFD for his project-programmer number in each file structure in which LOGIN
allows him to have files.

5.3.5 File Operations
File writing on the disk can be defined by one of three methods: creating, superseding, and updating.
The user is creating a tile if no other tile of the same name exists in the user’s directory on the indicated
file structure. If another file with the same name already exists in the directory, the user is superseding,
or replacing, the old file with the new file. Other users sharing the old file at the time it is being
superseded continue using the old file and are not affected until they finish using the file and then try to
access it again. At that time, they read the new file. When a user updates a file, he modifies selected
parts of the tile without creating an entirely new version. This method eliminates the need to recopy a
tile when making only a small number of changes. If other users try to access a file while it is being
updated, they receive an error indication issued by the system.

53.6 Disk Storage Management
File storage is dynamically allocated by the file handler during program operations, so the user does
not need to give initial estimates of file length or the number of files. Files can be any length, and each
user may have as many tiles as he wishes, as long as disk space is available and the user has not
exceeded his logged in quota. This feature is extremely useful during program development or debugg-
ing when the final size of the tile is still unknown. However, for efficient random access, a user can
reserve a contiguous area on the disk if he desires. When he has completed processing, he can keep his
preallocated file space for future use or return it so that other users can have access to it.

5.4 INPUT/OUTPUT

5.1.1 Peripheral Device Assignment
With the command language, the user can also request assignment of any peripheral device (magnetic
tape, DECtape, and private disk pack) for exclusive use. When the request for assignment is received,
the operating system verifies that the device is available to this user, and the user is granted its private
use until he relinquishes it. In this way, the user can also have complete control of devices such as card
readers and punches, paper tape readers and punches, and line printers.

5.4.2 Spooling
When private assignment of a slow-speed device (card punch, line printer, paper tape punch, and
plotter) is not required. the user can employ the spooling feature of the operating system. Spooling is a
method by which output to a slow-speed device is placed on a high-speed disk or drum. This technique
prevents the user from consuming unnecessary system resources whiie waiting for either a device to
become available or output to be completed. In addition, the device is managed to a better degree
because the users cannot tie it up indefinitely, and the demand fluctuations experienced by these
devices are equalized.

5.5 MEMORY MANAGEMENT
The DECsystem-10 is a multiprogramming system, i.e., it allows multiple independent user programs
to reside simultaneously in memory and to run concurrently. This technique of sharing memory and
processor time enhances the efficient operation of the system by switching the processor from a pro-
gram that is temporarily stopped because of I/O transmission to a program that is executable. When
core and the processor are shared in this manner, each user’s program has a memory area distinct from
the area of other users. Any attempt to read or change information outside the area a user can access
immediately stops the program and notifies the operating system.

5.5.1 Secondary Memory
Because available memory can contain only a limited number of programs at any one time, the com-
puting system employs a secondary memory, usually disk or drum, to increase the number of users
serviced. User programs exist on the secondary memory and move into main memory for execution.
Programs in memory exchange places with the programs being transferred from secondary memory
for maximum use of available main memory. Because the transferring, or swapping, takes place
directly between main memory and the secondary memory, the central processor can be operating on a
user program in one part of memory while swapping is taking place in another. This independent,
overiapped operation greatly improves system utilization by increasing the number of users that can be
accommodated at the same time.

5.5.2 Reentrant Software
To further increase the utilization of memory, the operating system allows users to share the same copy
of a program or data segment. This prevents the excessive memory usage that results when a program
is duplicated for several users. A program that can be shared is called a reentrant program and is
divided into two parts or segments. One segment contains the code that is not modified during execu-
tion (e.g., compilers and assemblers) and can be used by any number of users. The other segment
contains non-reentrant code and data. The operating system provides protection for shared segments
to guarantee that they are not accidentally modified.

5.5.3 Virtual Memory
The virtual memory option permits a user program to execute with an address space greater than the
physical memory actually allocated to that program during execution. User jobs are swapped as
described above. However, the entire program may not necessarily be in core during execution. Pro-
grams are divided into pages, each of which is 512 words long. Some of these pages may remain on
secondary storage while the program executes. When a virtual memory job attempts to access a page
that is not in core, a page fault handler decides which page or pages to remove from core and which to
bring in from secondary storage.

Unlike the virtual memory implementation on other systems, this DECsystem-IO feature is an option.
Each site may determine its own need for virtual memory and install it at their convenience. The
system admuustrator may grant the privilege for using virtual memory only to those users who truly
need its capabilities. Those users who are granted the privilege of using virtual memory may elect to
invoke the feature for only those programs that could not execute without the virtual memory
capability.

The virtual memory users may elect to use the system page fault handler or they may use a handler that
is more tailored to the particular application or program behavior. Finally, it is important to point out
that only those users actually using the virtual memory feature are affected by any additional overhead
associated with a demand paging system. Non-virtual users execute as they would in a non-virtual
system with no discernible difference in performance.

SYS10/5-1 I

5.6 MULTIPROCESSING SYSTE%lS
DECsystem- 10 dual-processor systems are composed of two CPUs, designated the primary processor
(master) and the secondary processor (slave). The primary processor is connected to all of the memory
in the system and has all of the system’s peripheral I/O equipment connected to its I/O bus. The
secondary processor also has access to all of memory; however, there are normally no I/O devices on
this processor’s I/O bus, although certain devices may be attached in real-time applications. The
primary processor performs exactly the same operations as the processor in a single-processor system.
This includes ail I/O operations, swapping, core allocation, resource allocation, and command decod-
ing. The secondary processor also performs scheduling and execution of user jobs according to the
same algorithm used in a single-processor system.

The secondary processor executes user jobs and scans the same job queues as the primary processor.
However, since the slave cannot do any standard I/O, it looks for any compute-bound jobs which are
in core and runnable. A software interlock has been added to the scheduler to prevent the possibility of
both processors trying to execute the same job at the same time. Whenever a job being executed by the
secondary processor requests an I/O operation to be performed, the job is stopped and marked for
execution on the master only. Thus both processors run completely asynchronously, both executing
the same scheduler, doing the same job accounting, and using the same job queues.

The existence of dual processors gives DECsystem-10 users a large-scale computing capability, espe-
cially in the areas of highly compute-bound jobs and noninteractive batch jobs. The existence of a slave
more or less dedicated to user computation allows these jobs to be carried on in the systems with little
interference with time-sharing users. The performance goal is to provide a system in which each cus-
tomer can improve the service offered to his users over a single-processor, compute-bound system.
Either the customer can add up to l/3 more users with the same response time or he can keep the same
number of users and reduce turnaround time for compute-bound jobs.

5.7 INTERJOB COMMUNICATIONS

5.7.1 Shared Data Areas
The DECsystem- 10 operating system enables a real-time user to communicate with other jobs through
the use of sharable data areas. This also enables a data analysis program, for example, to read or write
an area in the real?time job’s core space. Since the real-time job associated with the data acquisition
would be locked in core, the data analysis program residing on secondary memory would become core
resident only when the real-time job had filled a core buffer with data. Operating system calls can be
used to ailow the data analysis program to remain dormant in secondary memory until a specified
event occurs in the real-time job, e.g., a buffer has been filled with data for the data analysis program
to read. When the specified event occurs, the dormant program is then activated to process the data.
The core space for the real-time job’s buffer area or the space for the dormant job does not need to be
reserved at system generation time. The hardware working in conjunction with the operating systems
core management facilities provides optimum core usage.

5.7.2 Interprocess Communication Facility
The interprocess communication facility (IPCF) provides the capability for independent jobs to com-
municate with one another. For example, if several programs are involved in processing or maintain-
ing a data base, it is possible that one program might want to inform the others of any modifications it
made to the data. A job using IPCF cannot make any changes to another job so protection is in no way
sacriticed when using the IPCF feature.

SYSIOIS-12

In order to use IPCF. each participating job that wishes to receive communication from other jobs
must request a unique process (job) identifier (PID) from the system. The transmitting job then may
send a “packet” of information to another job. (In addition to the information, the system automat-
ically provides a “return address” so that the receiving program can respond to the sender.) The
monttor maintains a linear queue (the “mailbox”) for each job using IPCF. The packet (or packets)
will be kept in the mailbox until the receiving job retrieves it. This queue is not created until a job sends
an IPCF packet and it does not occupy any space until such time. The maximum number of packets
allowed in a queue at any one time is determined by a “receive” quota that may be set at each installa-
tion for each user. (If no quota is set by the installation, the standard default is five.)

On systems with the virtual memory option, the packet could be an entire page. In this case, the
monitor takes advantage of the page mapping hardware of the KIIO and KLlO to transmit the page
without actually copying it.

5.8 NONRESIDENT SYSTEM SOFTWARE
For the computer to execute any of the basic operations which it is capable of executing, it must be told
which operation it is to perform and where to find the information on which to perform the operation.
This requires that a language be established by which the user can indicate to the computer what it
needs to know. This language is the machine language of the computer and is unique for each machine.
This machine language is the means by which the computer’s circuits are instructed to perform the
desired operation and, because of this, it is the fastest and most direct method of programming.
However, machine language programming is not the easiest method of programming for most users to
employ. Although it is not impossible to memorize all of the operation codes recognized by the com-
puter, it can be very difficult for the programmer to remember where each piece of information is
inside memory in order to direct the computer to it. Therefore, symbolic language programming was
developed to aid the programmer in manipulating the computer.

With symboiic language programming, programs are written using symbols which, when translated,
equal the machine language of the computer. Symbol operation codes (mnemonics that specify which
operation the user wants the computer to perform) are translated to the actual, or absolute, operation
codes that the computer understands. Addresses of core are designated with symbolic labels and are
converted into absolute core addresses so that the computer can locate the information on which to
perform the desired operation.

There are three kinds of translators used in symbolic language programming: assemblers, compilers,
and interpreters. An assembler is a program that is able to take another program written in symboiic
language and translate it, item by item, into machine language. Therefore, to assemble a program
means to substitute one absolute value for one symbolic notation until the entire program has been
translated. A compiler also translates a symbolic language program into a machine language program,
but the substitution is not one-to-one. A program written in a compiler language is freer in format than
an assembly language program, and the language elements usually resemble English words. The com-
piler is larger and more complex than most assemblers, because it translates a program that is farther
away from the machine language. Generally, one statement written in a compiler language is trans-
lated into several machine language instructions. Although a compiler occupies more space in memory
and is generally slower than an assembler, a program written in a compiier language is more com-
patible with other computer models and the language itself is easier to learn and write because of its
general statements and freer format. An interpreter differs from a compiler in that a binary version of
the program is not produced for storage. Each statement of the source text is translated into machine
language and then executed immediately before the next statement is processed. Interpreters are gener-
ally useful when the program to be translated will probably be executed only once or twice and there-
fore not need some of the time-consuming features of a compiler, such as program optimization and
output of the machine language instructions.

SYSlO/S-13

5.8.1 ,MACRO Assembler
MACRO is the symbolic assembly program on the DECsystem-IO. It makes machine language pro-
gramming easier and faster for the user by:

I. Translating symbolic operation codes in the source program into the binary codes needed in
machine language instructions

2. Relating symbols specified by the user to numeric values

3. Assigning absolute core addresses to the symbolic addresses or program instructions and
data

4. Preparing an output listing of the program which includes any errors detected during the
assembly process.

MACRO programs consist of a series of statements that are usually prepared on the user’s terminal
with a system editing program. The elements in each statement do not have to be placed in certain
columns nor must they be separated in a rigid fashion. The assembler interprets and processes these
statements, generates binary instructions or data words, and performs the assembly.

MACRO is a 2-pass assembler. This means that the assembler reads the source program twice. Bas-
ically, on the first pass, ail symbols are defined and placed in the symbol table with their numeric
values, and on the second pass, the binary (machine) code is generated. Although not as fast as a l-pass
assembler. MACRO is more efficient in that less core is used in generating the machine language code
and the output to the user is not as long.

MACRO is a device-independent program; it allows the user to select at runtime standard peripheral
devices for input and output files. For example, input of the source program can come from the user’s
terminal. output of the assembled binary program can go to a magnetic tape, and output of the
program listing can go to the line printer.

The MACRO assembler contains powerful macro capabilities that allow the user to create new lan-
guage elements. This capability is useful when a sequence of code is used several times with only the
arguments changed. The code sequence is defined with dummy arguments as a macro instruction.
Thus. a single statement in the source program referring to the macro by name, along with a list of the
real arguments, generates the correct and entire sequence. This capability allows for the expansion and
adaptation of the assembler in order to perform specialized functions for each programming job.

5.8.2 Compilers

5.8.2.1 .ALGOL - The ALGOrithmic Language, ALGOL, is a scientific language designed for
describing computational processes, or algorithms. It is a problem-solving language in which the prob-
lem is expressed as complete and precise statements of a procedure.

The DECsystem-10 ALGOL system is based on ALGOL-60. It is composed of the ALGOL processor,
or compiler. and the ALGOL object time system. The compiler is responsible for reading programs
written in the ALGOL language and converting these programs into machine language. Also any
errors the user made in wrrting his program are detected by the compiler and passed on to the user.

SYSlO/S-14

The ALGOL object time system provides special services, including the input/output service, for the
compiled ALGOL program. Part of the object time system is the ALGOL library, a set of routines that
the user’s program can call in order to perform calculations. These include the mathematical functions
and the string and data transmission routines. These routines are loaded with the user’s program when
required: the user need only make a call to them. The remainder of the object time system is respon-
sible for the running of the program and providing services for system resources, such as core alloca-
tion and management and assignment of peripheral devices.

5.8.2.2 BASIC - The Beginner’s All-purpose Symbolic Instruction Code, BASIC, is a problem-sol-
ving language that is easy to learn because of its conversational nature. It is particularly suited to a
time-sharing environment because of the ease of interaction between the user and the computer. This
language can be used to solve problems with varying degrees of complexity, and thus has wide appli-
cation in the educational, business, and scientific markets.

,

BASIC is one of the simplest of the programming compiler languages available because of the small
number of clearly understandable and readily learned statements that are required for solving almost
any problem. The BASIC language can be thought of as divided into two sections: one section of
elementary statements that the user must know in order to write simple programs and a second section
of advanced techniques for more powerful programs.

The BASIC user types in computational procedures as a series of numbered statements that are com-
posed of common English terms and standard mathematical notation. After the statements are
entered, a run-type command initiates the execution of the program and returns the results.

The BASIC system has several special features built into its design:

1. BASIC contains its two editing facilities. Existing programs and data files can be modified
directly with BASIC instead of with a system editor by adding or deleting lines, by rese-
quencing the line numbers, or by combining two files into one. The user can request a listing
of all or part of any of his files on either the line printer or the terminal.

2. At the editing level, BASIC allows various peripheral devices (e.g., disk, magnetic tape,
DECtape, card reader and punch, high-speed paper tape reader and punch, and paper tape
reader and punch attached to the user’s terminal) to be used for storage or retrieval of
programs and data files. Within a program, information can be read from or written to the
terminal and to the disk (in the latter case, either sequentially or by random access).

3. Output to the terminal can be simply formatted by tabs, spaces, and columnar headings or
more precisely formatted by using the advanced PRINT USING statement.

4. BASIC has statements designed exclusively for matrix computations.

5. An advanced string handling capability includes a concatenation operator, substring and
search functions. and other string intrinsic functions. Mathematical intrinsic functions are
contained in BASIC, along with methods by which the user can define his own functions.

5.8.2.3 COBOL - The Common Business Oriented Language, COBOL, is an industry-wide data
processing language that is designed for business applications, such as payroll, inventory control, and
accounts receivable.

SYSlO/S-15

Because COBOL programs are written in terms that are familiar to the business user, he can easily
describe the formats of his data and the actions to be performed on this data in simple English-like
statements. Therefore, programming training is minimal, COBOL programs are self-documenting,
and programming of desired applications is accomplished quickly and easily.

The COBOL system is composed of a number of software components. The first is the COBOL com-
piler which is responsible for initializing the program, scanning the command strings for correct syn-
tax. generating the code, listing, and final assembly. The second component is the object time system,
LIBOL, which consists of subroutines used by the code generated by the compiler. These subroutines
include the I/O, conversion, comparison, and mathematical routines available to the COBOL user.
Another component is the source library maintenance program, which builds and maintains a library
of source language entries that can be induded in the user’s source program at compile time. A fourth
component is the stand-alone report generator, COBRG, which produces COBOL source programs.
When compiled and loaded, these programs generate reports. The stand-alone program, SORT,
accepts commands from the user’s terminal in order to perform simple sorting of files. The RERUN
program is used to restart a COBOL program that was interrupted during execution because of a
system failure, device error, or disk quota error. COBDDT is a utility that debugs COBOL programs.
Finally, ISAM builds and maintains indexed sequential ftles for the user.

DECsystem- 10 COBOL accepts two source program formats: conventional format and standard for-
mat. The conventional format is employed when the user desires his source programs to be compatible
with other COBOL compilers. This is the format normally used when input is from the card reader.
The standard format is provided for users who are famiiiar with the format used in DECsystem-10
operations. It differs from conventional format in that sequence numbers and identification are not
used because most DECsystem-10 programs require neither. The compiler assumes that the source
program is written in standard format unless the appropriate switch is included in the command string
to the compiler or the special sequence numbers created by the symbolic editor LINED are detected by
the compiler.

DECsystem-10 COBOL is the highest level of ANSI COBOL available and because it operates within
the operating system, it offers the user the many features of the DECsystem-IO in addition to the
business processing capability of the language. These features enable the COBOL user to run programs
in either time-sharing or Patch processing environments or both, to perform on-line editing and
debugging of his programs with the system programs available, to choose various peripheral devices
for input and output,.and to write programs that can be shared with other users.

5.8.2.1 FORTRAN - The FORmuia TRANsiator language, FORTRAN, is a widely used procedure-
oriented programming language. It is designed for solving scientific-type problems and is thus com-
posed of mathematical-like statements constructed in accordance with preciseiy formulated rules.
Therefore, programs written in the FORTRAN language consist of meaningful sequences of these
statements that are intended to direct the computer to perform the specific computations.

FORTRAN has a varied use in every segment of the computer market. Universities find that FOR-
TRAN is a good language with which to teach students how to solve problems via the computer.
Scientific markets rely on FORTRAN because of the ease with which scientific problems can be
expressed. In addition, FORTRAN is used as the primary data processing language by time-sharing
utilities.

Because of this wide market, DECsystem-10 FORTRAN-10 is designed to meet the needs of all users.
FORTRAX 10 is compatible with and encompasses the ANSI standard. FORTRAN- IO also provides
many extensions and additions to this standard which greatly enhance its usefulness and increase its
compatibility with other FORTRAN language sets.

SYS10!5-16

FOROTS. the FORTRAN-10 object time system, implements all program data file functions and
provides the user with an extensive runtime error reporting system. An additional feature is that the
association between FORTRAN logical units and the file descriptions to which they refer may be
made either within the source program or deferred until runtime.

DECsystem-10 FORTRAN-IO also supports FORDDT, an interactive program that is used as an aid
in debugging FORTRAN programs.

The FORTRAN system is easy to use in both the time-sharing and batch processing environments.
Under time-sharing, the user operates in an interactive editing and debugging environment, Under
batch processing, the user submits his program through the GALAXY batch software in order to have
the compiling, loading, and executing phases performed without his intervention.

FORTRAN programs can be entered into the FORTRAN system from a number of devices: disk,
magnetic tape, DECtape, user terminal, paper tape reader, and card reader. In addition to data files
created by FORTRAN, the user can submit data files or FORTRAN source files created by the system
programs LINED, PIP, or TECO. The data files contain the data needed by the user’s object program
during execution. The source files contain the FORTRAN compiler. Commands are entered directly
to the FORTRAN compiler with a run-type command or indirectly through a system utility program
that accepts and interprets the user’s command string and passes it to the compiler. Output can then be
received on the user’s terminal, disk, DECtape, magnetic tape, card punch, or paper tape punch.

5.8.3 Interpreters

5.83.1 AID - The Algebraic Interpretive Dialogue, AID, in the DECsystem-IO adaptation of the
language elements of JOSS. a program developed by the Rand Corporation. To write a program in the
AID language requires no previous programming experience. Commands to AID are typed in via the
user’s terminal as imperative English sentences. Each command occupies one line and can be executed
immediately or stored as part of a routine for later execution. The beginning of each command is a
verb taken from the set of AID verbs. These verbs allow the user to read, store and delete items in
storage; halt the current processing and either resume or cancel execution; type information on his
terminal; and define arithmetic formulas and functions for repetitive use that are not provided for in
the language. However, many common algebraic and geometric functions are provided for the user’s
convenience.

The AID program is device-independent. The user can create external files for storage of subroutines
and data for subsequent recall and use. These files may be stored on any retrievable storage media, but
for accessibility and speed, most files are stored on disk.

5.8.3.2 APL - APL (A Programming Language) is a concise programming language especially suit-
able for dealing with numeric and character array-structured data. APL is a completely conversational
system which tends to increase programmer productivity and expertise by allowing the user to interact
with the APL system and his running programs. APL is rich in operators that facilitate array calcu-
lations. This higher level programming is accomplished by suppressing much of the programming
detail inside single APL operators. One operator may be used to sort a vector of values in ascending
order, thereby making “sort” a primitive operation rather than a tedious subroutine. APL is intended
for use as a general data processing language as well as a mathematician’s tool.

SYSlO/S-17

5.833 CPL - CPL is a highly interactive language interpreter. The language itself is a subset of the
PL/ 1 programming language. It provides a rich array of data types, function and subroutine capabili-
ties, storage control, and input/output facilities. In addition, CPL includes its own line-oriented editor
and a debugging system that allows the user to interactively and incrementally diagnose program
problems. It runs under the control of current versions of the TOPS-10 operating system. CPL can
handle any number of independent users, and can be used simultaneously with other languages in
either batch or time-sharing modes.

5.8.4 Editors

5.8A.l LINED - The LINe EDitor for disk files, LINED, is used to create and edit source files
written in ASCII code with line numbers appended. These line numbers allow LINED to reference a
line in the tile at any time without having the user close and then reopen the file. The user has the
option of either specifying the beginning line number and the increment to the next line number when
inserting lines or allowing LINED to assume a beginning line number and increment if the user specili-
cation is omitted.

Commands to LINED allow the user to create a new file or edit an existing file by inserting, replacing,
or deleting lines within the file. Single or multiple lines of the file can be printed on the user’s terminal
for an aid in editing. When the user has edited the file to his satisfaction, he closes the file and can
either open a new file or return to monitor level to assemble or compile his file.

5.8.J.2 TECO - The Text Editor and Corrector program, TECO, is a powerful editor used to edit
any ASCII test file with a minimum of effort. TECO commands can be separated into two groups: one
group of elementary commands that can be applied to most editing tasks, and the larger set of sophis-
ticated commands for character string searching, text block movement, conditional commands, pro-
grammed editing, and command repetition.

TECO is a character-oriented editor. This means that one or more characters in a line can be changed
without retyping the remainder of the line. TECO has the capability to edit any source document:
programs written in MACRO, FORTRAN, COBOL, ALGOL, or any other source language: specili-
cations: memoranda; and other types of arbitrarily formatted text. The TECO program does not
require that line numbers or other special formatting be associated with the text.

Editing is performed by TECO via an editing buffer, which is a section within TECO’s core area.
Editing is accomplished by reading text from any device (except a user’s terminal) into the editing .
buffer (inputting), by modifying the text in the buffer with data received from either the user’s terminal
or a command file (inserting), and by writing the modified text in the buffer to an output file
(outputting).

.4 position indicator, or buffer pointer, is used to locate characters within the buffer and its position
determines the effect of many of TECO’s commands. It is always positioned before the first character,
between two characters, or after the last character in the buffer. Various commands, such as insertion
commands. always take place at the current position of the buffer pointer.

There are TECO commands to manipulate data within the editing buffer. Input and output commands
read data from the input file into the buffer and output data from the buffer to the output file. There
are other commands to have one or more characters inserted into the editing buffer, deleted from the
buffer. searched for. and/or typed out. In addition, the user can employ iteration commands to exe-
cute a sequence of commands repeatedly and conditional execution commands to create conditional
branches and skips.

SYSiO/5-18

5.8.4.3 SOUP - The Software Updating Package, SOUP, is a set of programs that faciiitates the
updating of system or user source files. Because software is constantly being updated to reflect changes
and improvements made by DIGITAL, a method to make the updating process easier and faster for ail
concerned was developed. SOUP enables DIGITAL to distribute a file containing only the differences
to the software routine instead of redistributing the entire routine. In addition, since customers fre-
quently maintain system files that are modified to reflect their individual needs, SOUP can be used to
update these modified ftles as well. Although SOUP was implemented to update system files, it can be
employed to update any source file with more than one version.

The Software Updating Package consists of three programs. The first program, CAM, is responsible
for:

1. Comparing the new version of DIGITAL’s system file to the previous version to produce a
correction file

‘)
_. Merging two correction files derived from the same file to produce a single correction file.

The correction tile contains a series of editing changes that reflect the differences between the old and
new versions of the system files. The two functions of CAM can be performed simultaneously or one at
a time, depending on the user’s command string to CAM.

The second program, COMPIO, is used when the customer has modified DIGITAL’s file to such an
extent that CAM cannot compare the modified file to the original file due to buffer overflow.
COMPlO has extremely large buffers and can, therefore, be used to generate the correction file.

The third program, FED, reads the correction file and edits the copy of the system file by making the
changes indicated in the correction file. When FED has completed its processing, the user has.an
updated file. As a software manufacturer, DIGITAL sends the user a correction file, and he, in turn,
need only run the FED program in order to update his system tiles.

5.8.4.4 RUNOFF - RUNOFF facilitates the preparation of typed or printed manuscripts by per-
forming line justification, page numbering, titling, indexing, formatting, and case shifting as directed
by the user. The user creates a file with an editor and enters his material through his terminal. In
addition to entering the text, the user includes information for formatting and case shifting. RUNOFF
processes the tile and produces the final formatted file to be output to the terminal, the line printer, or
to another file.

With RUNOFF, large amounts of material can be inserted into or deleted from the file without
retyping the text that will remain unchanged. After the group of modifications have been added to the
file. RUNOFF produces a new copy of the file which is properly paged and formatted.

5.8.5 Utilities

5.8.5.1 CREF - The Cross REFerence listing program, CREF, is an aid in program debugging and
modification. It produces a sequence-numbered assembly listing followed by tables showing cross-
references of all operand-type symbols, all user-defined operators, and ail machine op codes and
pseudo op codes.

The input to CREF is a modified assembly listing created during assembly or compilation. The com-
mand string entered by the user specifies the device on which this assembly listing is located along with
the output device on which to list the cross-reference tables and assembly listings. Switches can also be
included in the command string in order to control magnetic tape positioning and to select specific
sections of the listing output.

SYS10/5-19

5.8.5.2 DBMS-10 - The Data Base Management System (DBMS-IO) is a facility of the DECsystem-
10 that permits the user to consolidate his data files into one or more data bases. A data base is a
collection of nonredundant data items that can be accessed by a variety of programs and/or appli-
cations that have common processing requirements and functional relationships. The data base is
created and maintained through modules of DBMS-IO. These modules permit the user to structure the
data such that each application can access it in optimum fashion, yet no data item is actually dupli-
cated in the data base. This arrangement is accomplished by the data base administrator who struc-
tures the data base in a manner such that each application can access it through a search pattern most
suited to its needs. Once the data base has been established, users can access the data through COBOL
programs containing special data base syntax.

5.8.5.3 DDT - The Dynamic Debugging Technique, DD’T, is used for on-line program composition
of object programs and for on-line checkout and testing of these programs. For example, the user can
perform rapid checkout of a new program by making a change resulting from an error detected by
DDT and then immediately executing that section of the program for testing.

After the source program has been compiled or assembled, the binary object program with its table of
defined symbols is loaded with DDT. In command strings to DDT, the user can specify locations in his
program, or breakpoints, where DDT is to suspend execution in order to accept further commands. In
this way, the user can check out his program section-by-section and, if an error occurs, insert the
corrected code immediately. Either before DDT begins execution or at breakpoints, the user can
examine and modify the contents of any location. Insertions and deletions can be in source language
code or in various numeric and text modes. D DT also performs searches, gives conditional dumps, and
calls user-coded debugging subroutines at breakpoint locations.

5.8.5.4 FAILSAFE/BACKUP - The FAILSAFE/BACKUP programs are used to selectively or uni-
versally save disk files on magnetic tape. Files may be copied to magnetic tape, in a special format,
selectively by filename or groups of filenames, by project/programmer number, by disk structure
(logical or physical), or universally. In addition to providing backup of files, these programs allow a
method of extending disk space by allowing infrequently used files to be stored on tape. Restoring of
‘tiles from FAILSAFE/BACKUP format tapes can likewise be handled on an individual file. on
groups of files, or on a project/programmer, logical, or physical disk basis. An added benefit is ach-
eived when restoring files in that disk fragmentation is often minimized by the failsafe/restore
operation.

5.8.5.5 FILEX - The FILE transfer program, FILEX, converts between various core image formats
and reads or writes various DECtape directory formats and standard disk files. Files are transferred as
36-bit binary data with no processing performed on the data except that necessary to convert the core
image representation. The core image formats that can be used in conversions are:

I. Saved-file format
2. Expanded core image file format
3. Dump format
4. Simple block format (project IMAC’S equivalent of DEC’s .SAV format)
5. Binary file format.

The desired core image format is determined by the specific extension associated with the file but this
extension may be overridden by the use of switches in command strings to FILEX.

SYS 10/5-20

DECtapes can be read or written in binary, PDP-6 DECtape format, MIT Project MAC PDP-6/10
DECtape format, PDP-11 DOS format, or PDP-15 format. In the latter two cases, ASCII files will be
converted. The DECtape can be processed quickly via a disk scratch file, which is a much faster
method for a tape with many files. This scratch file can be preserved and reused in later command
strings. In addition. the DECtape directory can be listed on the user’s terminal or zeroed in the appro-
priate format on the tape. These DECtape format and processing specifiers are indicated by command
string switches.

5.8.5.6 ITPSlO - The In-House Text Preparation System (ITPS-10) allows DECsystem-10 users to
prepare office-quality or camera-ready (typeset) copy using the interactive capability of the DECsys-
tern- 10. High-quality, camera-ready copy for pamphlets, advertising brochures, product flyers, user
manuals, and many other types of documentation can be produced and updated rapidly and
inexpensively using ITPS-10. The system allows use of many different input and output devices,
including OCRs, interactive CRT or hard copy terminals, line printers, typewriter-like devices, and
photocomposition equipment. Documents are stored as standard DECsystcm-10 files and can be eas-
ily updated. edited, and re-generated.

The system is easy to use and easy to learn. Current successful applications range from preparing form
letters to setting daily newspapers.

5.8.5.7 LINK-10 - LINK- 10, the DECsystem- 10 linking loading, merges independently translated
modules of the user’s program into a single module and links this module with system modules into a
form that can be executed by the operating system. It provides automatic relocation and loading of the
binary modules producing an executable version of the user’s program. When the loading process has
been completed, the user can request LINK-10 either to transfer control to his program for immediate
execution or to output the program to a device for storage in order to avoid the loading procedure in
the future.

While the primary output of LINK-10 is the executable version of the user’s program, the user can
request auxiliary output in the form of map, log, save, symbol, overlay plot, and expanded core image
tiles. This additional output is not automatically generated: the user must include appropriate switches
in his command strings to LINK-10 in order to obtain this type of output. The user can also gain
precise control over the loading process by setting various loading parameters and by controlling the
loading of symbols and modules. Furthermore, by setting switches in his command strings to LINK-
10, the user can specify the core sizes and starting addresses of modules, the size of the symbol table,
the segment into which the symbol table is placed, the messages he will see on his terminal or in his log
file. and the severity and verbosity levels of the messages. Finally, he can accept the LINK-10 defaults
for items in a file specification or he can set his own defaults that will be used automatically when he
omits an item from his command string.

LINK-10 has an overlay facility to be used when the total core required by a user’s program is more
than the core available to the user. The user organizes his program so that only some portions of the
program are required in core at any one time. The remaining portions reside in a disk file and are
transferred in and out of core during execution. Because the portion brought into core may overlay a
portion already core-resident, the amount of core required by the entire program is reduced. Overlays
can be evoked either by runtime routines called from the user’s program or by automatic calls to
subroutines outside the current overlay link.

SYS 1015-21

5.8.5.8 PIP - The Peripheral Interchange Program, PIP, is used to transfer data files from one I/O
device to another. Commands to PIP are formatted to accept any number of input (source) devices and
one output (destination) device. Files can be transferred from one or more source device to the destina-
tion device as either one combined file or individual tiles. Switches contained in the command string to
PIP provide the user with the following capabilities:

I. Naming the files to be transferred
2. Editing data in any of the input files
3. Defining the mode of transfer
4. Manipulating the directory of a device if it has a directory
5. Controlling magnetic tape and card punch functions
6. Recovering from errors during processing.

5.8.5.9 MACYll and LNKXll - MACY 11 is a cross-assembler which operates on the DECsystem-
10 and assembles MACRO-! 1 source code for the PDP-I! family of computers.

MACY 11 will produce either an absolute binary or a relocatable object module, depending on the
assembly mode. The resulting absolute binary files are transferable to the PDP- 11 for execution or the
relocatable object modules may be used as input to the LNKX! 1 linker on the DECsystem-10 and
then transferred to the PDP-1 1 operating environment. MACY 11 will append a symbol table and
(optionally) a cross-reference table to the listing file. MACY! 1 produces a “side-by-side” assembly
listing of symbolic source statements, their octal equivalents, assigned addresses, and error codes.

5.8.5.10 MCS-IO - The *Message Control System (MCS-10) provides the DECsystem-10 with an
efficient, transaction processing-oriented system that facilitates control of communications between a
network of terminals and applications processes. The intent is to provide generalized routines that are
readily used from COBOL programs and network deftnitions. Message control in its fullest sense
includes a complex of hardware and software systems:

I.
7 _.

3.
4.
5.
6.
7.
8.
9.

Terminals and Transmission Devices
Remote and Central Site Concentrators
Central Site Communications Multipiexers
DECsystem-10 Monitor and Its Message Service Module
Message Control System (MCS-10) Routines
Extended Communications Language IModule and Interfaces (COBOL/LIBOL)
Network Definition, Activationand Operations Control Routines
Message-Oriented Applications Programs
Data Base Management Capability via DBMS-lo.

The activities normally associated with message control are cooperative processes distributed among
communications concentrators, multiplexers. and a central system. Actual I/O transmission, line con-
trol. error handling, device selection, code translation, and message buffering are handled by the
remote and local concentrators and front-end processors. The DECsystem- 10 Central Processor, mon-
itor. and message control modules accept, route, queue, and log terminal and application program-
generated messages. Upon the occurrence of specific user-specified events, application programs are
activated to perform message processing. Applications programs receive messages from queues
through interface modules. perform processes related to data within messages, and send messages back
through queues to terminals and/or other application processes.

-

5.8.6 Monitor Support Programs

5.8.6.1 MONGEN - The MONitor GENerator, MONGEN, is a dialogue program that enables the
system programmer to define the hardware configuration of his individual installation and the set of
software options that he wishes to select for his system. This program is a prerequisite for creating a
new monitor.

The system programmer detines his contiguration in one of four dialogues by answering MONGEN’s
questions in conversational mode. MONGEN transmits one question at a time to the user’s terminal,
and the user answers appropriately depending on the content of each question. After ail questions have
been answered, MONGEN produces MACRO source files containing the user’s answers. These source
files are then assembled and loaded with the symbol definition file and the monitor data base to yield a
monitor tailored to the individual installation.

5.8.6.2 OPSER - The Operator SERvice program, OPSER, facilitates multiple job control from a
single terminal by allowing the operator or the user to initiate several jobs, called subjobs, from his
terminal. The OPSER program acts as the supervisor of the various subjobs by allowing monitor-level
and user-level commands to be passed to all of the subjobs or to individually selected subjobs. Output
from the various subjobs can then be retrieved by OPSER.

The subjobs of OPSER run on pseudo-TTYs, a simulated terminals not defined by hardware. All
initializations of the pseudo-TTYs are performed by OPSER; the operator need only supply a subjob
name. By running system programs, which ordinarily required a dedicated terminal, as subjobs of
OPSER, output from the various programs can be concentrated on one hardware terminal instead of
many. In addition, OPSER is able to maintain an I/O link between the running jobs and the operator -
a feature that is not available when programs run on their own dedicated terminals.

5.8.6.3 LOGIN - LOGIN is the system program used to gain access to the DECsystem-10. This
program consults system administration files in order to determine whether or not a potential user
currently is authorized to use the system. If.he is not, LOGIN will not permit him access to the system.
If the user is authorized, LOGIN informs him of messages of the day, reports any errors detected in his
disk files, and allows the user to proceed with his job.

5.8.6.4 KJOB-LOGOUT - The user evokes the system programs KJOB and LOGOUT when he has
finished running on the DECsystem-10. The many functions of these programs include saving the
user’s disk files in the state in which he desires them, enforcing logged-out quotas on all disk file
structures, terminating the user’s job, and returning the resources allocated to the user -back to the
system. These resources include the user’s job number, his allocated I/O devices, and his allocated
core.

5.9 CONSOLE SOFTWARE
The PDP-I I console processor is equipped with its own software package which provides the,basic
subroutines required for operation of KL 10 and PDP-11 programs. The subroutine package also
includes a separate program which is linked to/from the diagnostic segments. The software package
may be described as two segments: monitor and diagnostic, where each segment is an overlay of the
other. Each overlay has an associated console command module.

SY S 10/5-23

The monitor overlay is that code which is normally in the PDP- 11 during the time that the monitor is
running in the KLIO. The overlay provides device support to the KL 10 monitor for the console termi-
nal (CTY), one synchronous line for remote diagnosis, the RHl l/RPO4 disk system and the
TC 11 /TU56 D EC tape system.

In addition. the monitor overlay can - through the console command module - communicate with one
or more console terminals to perform console functions for the operator.

The diagnostic overlay consists of a subroutine package and the full console command module. The
subroutine package supports diagnostics that run in the PDP-11 and diagnose the KLlO. When the
diagnostic overlay is running, the subroutine package is resident and allows various diagnostics to be
retrieved and executed as required.

The monitor and diagnostic overlays are compatible in several ways. Communications between the
KLlO and the console terminal are handled through the same communication area with the same
communication protocol. When the monitor and diagnostic overlays are swapped, the KLlO and
console terminal communication is maintained since the communication area retains the terminal
number and its speed. Other status information is also maintained between overlays. For example, if
the monitor overlay has difficulty with a particular device, a flag is passed to the diagnostic overlay
when it is swapped in, indicating difficulty with that device.

An area of code not used by either the monitor or diagnostic overlays remains resident in PDP-11
memory for such functions as taking a crash dump of the KL 10 in the event both the KL 10 and PDP-
11 crash simultaneously. In addition there will be code common to both overlays resident when either
overlay is in PDP-11 core. This code would include segments of the console command facility that are
common to both overlays.

Note that the diagnostic software which does stand-alone diagnosis of the KDl 1 and its peripheral
devices will be executed independently of the console processor software package.

5.9.1 Basic Command Facility Description
The console command module in the monitor and diagnostic overlays implement the same command
language. The set of console commands available while the monitor overlay is resident is a proper
subset of those console commands available while the diagnostic overlay is resident.

Although the monitor console command module is limited, it is sufficient to accommodate most oper-
ator and system programmer requirements (e.g., bootstrap, run batch, trap parity errors, etc.). It
should only be necessary to load the full console command module of the diagnostic overlay when:

I. The KLlO has definitely stopped

7 _. Field service requires access to areas not normally of interest to operators of systems
programmers.

System status available through the monitor console commands will be information the KLlO monitor
stores in the communication areas. This status information consists of several software and hardware
status words obtained as a result of CONI and DATA1 instructions to system devices.

SYS 1015-24

5.9.2 General System Bootstrap
Associated with each PDP- 11 are three operator-accessible buttons located on the margin check panel.
The buttons are labeled TAPE, DISK, and OPERATOR. If the appropriate tape reel is mounted and
the operator presses TAPE, the bootstrap operation is initiated from the DECtape. Likewise, if the
appropriate disk pack is mounted and the operator presses DISK, the bootstrap operation is initiated
from the RPO4/06. These two options are automatic: the system is booted without any further oper-
ator intervention at least until the KLlO monitor initiates the once-only dialogue with the operator.

1 f the operator depresses OPERATOR, the KY 11 console switch register is referenced. In this case, the
content of the switch register is used for the remaining operator options. The switch register content
will determine which terminal to use for further operator interaction, whether to assume a full load or
initiate an operator dialogue, or whether to use the DECtape or RP04/06 for bootstrap.

5.93 Diagnostic Environments
Several system environments are encountered when executing KLlO or PDP-11 based diagnostics
including cases where the monitor overlay is resident in the console processor. When a KL 10 diagnos-
tic is executed in the KLlO under time-sharing, the console processor is unaware that it is a diagnostic
program and offers the same terminal service provided during any time-sharing program.

Available also is a facility to do limited diagnosis of PDP-11 peripherals under time-sharing. In this
case a diagnostic program will run in the KLlO and after having identified itself to the monitor will be
allowed to communicate with a small kernel of code in the console processor for diagnostic execution.
Note that in these two cases the monitor overlay is resident.

Those diagnostics which run in the PDP-I 1 and diagnose the KLlO require that the KLlO be stand-
alone. These diagnostics require the diagnostic overlay and use subroutines within the overlay to
accomplish common functions such as Teletype input/output, error message formatting and printing,
reading and writing the various RAMS, etc.

5.9.4 Diagnostic Options
The Field Service Engineer (FSE) bootstraps the system using the same procedure as the operator.
When an FSE wishes to run an PDP-11 peripheral diagnostic, he mounts an appropriate DECtape and
uses the bootstrap button to boot from the DECtape. He may also start the system bootstrap on the
RPO4/06 and indicate he wishes to execute an PDP-11 peripheral diagnostic, at which time an appro-
priate diagnostic monitor is loaded from an RPO4/06.

The ability to bypass sections of the load or do a partial load and examine specific areas prior to
executing the next step is available during bootstrap by requesting the operator dialogue. Also avail-
able is the ability to enter the console command facility at any time during the bootstrap operation.

During diagnosis of a KLlO hardware problem, the FSE would have the diagnostic overlay resident in
PDP- 11 memory. Using the console command language the FSE can examine and deposit locations in
KLlO memory, KLlO accumulators, and EBox registers. In addition, he may place a specific bit
pattern on the diagnostic bus and cause the KLlO to execute that specific diagnostic function.

SYSlO/S-25

5.9.5 System Failure Procedures
Depending on the type of EBox hardware crash (i.e., EBox clock stopped) the PDP-I 1 will obtain
some pertinent error and status information and write it onto the RPO4/06.

The PDP-I I will then type out an operator message stating that a Field Service stop has occurred and
allow examining of system conditions using the console functions.

On a KL 10 software crash, the PDP-1 1 will restart the KLiO at a location (similar to location 400 in
TOPS- 10) in the hope that enough code is left there to allow the KLiO to dump and then reload itself.

On a PDP-1 1 crash, the KLlO will read PDP-1 1 memory, using the MB873 to execute the KD ii ROM
code which outputs PDP-1 1 memory through the DTE20. The KL 10 writes the PDP- ii memory to the
RHP04 through the RHIO and then reloads the PDP- ii through the DTE20.

5.10 COMMUNICATION SOFTWARE
Until the capability of remote communications was implemented, each remote user of the DECsystem-
10 had been individually linked to the computer center by separate long distance telephone lines. Also,
the only device that the remote user had available at his location was the terminal; he was able to
utilize available devices at the central station, but he could not obtain output other than his terminal
output at his remote site. Either he had to travel to the central station to obtain a listing, or he had to
have the listings delivered to him. However, with remote communications hardware and software,
listing tiles and data can be sent via a single synchronous full-duplex line to a small remote computer.
That remote computer in turn services many remote peripherals, including terminals, card readers, and
line printers, This eliminates the need for the user to travel to the central site to obtain his output. The
remote computer and its associated peripherals constitute a remote station.

Remote station use of the central computer is essentially the same as local use. All sharable programs
and peripherals available to local users at the central computer station are also available to remote
users. The remote user specifies the resources he wants to use and, if available, these resources are then
allocated in the same manner as to a local user. In addition to utilizing the peripherals at the central
station, the remote user can access devices located at his station or at another remote station. Local
users at the central station can also make use of the peripherals at remote stations. Therefore, by
specifying a station number in appropriate commands to the operation system, each user of the DEC-
system-10 is given considerable flexibility in allocating system facilities and in directing input and
output to the station of his choice.

The DECsystem-10 allows for simultaneous operation of multiple remote stations. Software provi-
sions are incorporated in the operating system to differentiate one remote station from another. By
utilizing peripheral devices at various stations, the user is provided with increased capabilities. For
example. data can be collected from various remote stations, compiled and processed at the central
station. and then the results of the processing can be sent to all contributors of the data.

Operating system commands not only allow a user to access peripherals at other remote stations, but
also allow him to pretend that his job is at a remote station different from the physical station at which
he is actually located. In this case, the user has a logical station and can run entire jobs from this
station. With this capability, a local user at the central station could become a remote user as far as the
system was concerned by changing the location of his job to a remote station in contact with a central
station.

SYS 10 5-16

DECsystem-IO users have a wide selection of communications products to enhance or facilitate their
computing needs. Within the multitask environment of TOPS-10, functionality exists for:

1. Asynchronous communication - the typical vehicle for interactive time-sharing or transac-
tion-oriented terminals

1
a. Synchronous communications - for connection of remote batch, remote terminal concentra-

tion and computer-to-computer links.

The important feature of DECsystem-10 communications software is its implementation as an integral
part of the TOPS-10 operating system. The monitor, not the user, handles the communications house-
keeping, and all communications products are fully supported within the TOPS-10 environment.
Appropriate synchronous line protocols - DIGITAL’s own DDCMP or BISYNC - are supported.

Users may configure networks with simple or complex topologies utilizing the DN87 family of univer-
sal front-end equipment. The DASSO and DAS90-series remote stations/concentrators can then be
used to expand the network topologies. In addition, DECnet-10 permits the DECsystem-10 to utilize
task-to-task communications with other DECsystem-10s or with any other DEC-supplied computer
system which supports DECnet.

5.11 DIAGNOSTIC SOP-I-WARE

5.11.1 Operating System Features
TOPS-10 provides a number of features which allow the system to continue operating although some
devices may be inoperable.

When errors occur on disks, tapes, memory, or the slave CPU, TOPS-lOwill record the error data and
notify the operator. If the error can be fixed (e.g., put a disk back on-line), the user may continue
runnmg without further delay. Alternatively, the operator may instruct the system to remove (detach)
the device, in which case the jobs in error will be notified and the system will continue operation
without the specified device. If the error is in a bank of memory, TOPS-10 will even attempt to move
its own code (if any) out of the failing memory. In the case of disks, the system will attempt to migrate
any swapping space to another unit to prevent loss of jobs.

RP04 and RP06 type disks may be dual ported so that, in case of controller failure, the packs may be
accessed via an alternate path. In case of a unit failure, the pack may be moved to a working unit.

With use of appropriate I/O bus, memory bus, and device control switches, DECsystem-10s may be
configured to provide redundancy of hardware. Such systems may allow any piece of hardware to be
taken off-line and repaired while the system continues operation. (In some cases, it may be necessary to
reload the system after a significant reconfiguration.)

5.11.2 Integrated Diagnostic Logic
The diagnostic strategy has produced a high quality of maintenance aids which enforce the increased
performance and availability of a DECsystem-10. The design of the KLlO processor uses integrated
diagnostic logic to enable maximum visibility and reduce “hard-core” requirements. Special software
techniques are employed to maximize test coverage per diagnostic load, thereby decreasing the mean
time to diagnose.

SYS 1015-27

The writable control store feature of the KLlO has enabled the “microdiagnostic” alternate path
methodology of testing. This technology has enabled generation of diagnostics which narrow malfunc-
tions to the board level with a degree of confidence which exceeds industry standards.

Maintainability was attacked from a total system’s concept, for not only are the CPU diagnostics
capable of supporting the “module swap” philosophy of repair, the new generation of peripheral
diagnostics gives the maintainer the same qualities. The programs utilize special diagnostic wrap-
around logic to isolate suspected malfunctions to subsystem level. Then, through comprehensive logic
analysis. not just functionality, the repair person is directed to the failing module.

5.11.3 On-Line Preventive Maintenance
To further increase system availability, special features have been incorporated into the monitor to
enable on-line preventive maintenance.

Emphasis has also been placed on testing the thoroughness of detectability and the correctness of
isolation. Semi-automatic physical fault insertion is qualifying and providing maturity enhancements
for this product.

5.11.4 Remote Diagnosis
Another feature of the maintenance and diagnostic philosophy is the support of remote diagnosis
(KLINIK). This can prcvide distant maintenance personnel with hardware performance statistics to
improve the efficiency of service on KLlO-based systems.

5.11.5 iMonitor Error Reporting Programs
The purpose of this subsection is to give an overview of the monitor error reporting system and to
reference the appropriate detailed documentation. This subsection is intended to be short and to be
read by system programmers, system managers, operators and Field Service. They may then select
which of the other documents they are interested in.

5.11.5.1 Overview of the Monitor Error Reporting System - The DECsystem- 10 monitor 5.06 and later
collects the following information about the operation of the system:

1. The time and reason for each monitor reload
7 *. Error status information on disks, drums, and core memory
3. Device performance statistics.

The reload information helps the system manager and Field Service determine the mean time between
crashes and schedule reloads due to hardware and software problems. The error status information
aids Field Service in fixing problems before they become serious. The performance information helps
the system manager understand the service demands on his system. The same information helps Field
Service determine if the reliability of the system components are up to specifications.

5.11.5.2 Hardware Error Information - The DECsystem-10 monitor controls all of the I/O devices
and operates them in an efficient manner. It also follows error recovery procedures when a hardware
error is detected. Frequently the data can be recovered by retrying the operation. Such a successful
recovery is termed a soft error. An error which cannot be recovered is called a hard error. The monitor
keeps a record of all soft and hard errors along with all the hardware status information. This informa-
tion is written into a disk file by the DAEMON program for later processing by the Field Service
report program. SYSERR. The importance of keeping data about the nature of a soft error cannot be
overemphasized. Such information often permits Field Service to fix a device before it progresses to
the hard error stage. LMost soft errors are not reproducible and so are difficult to find using stand-alone
diagnostics.

SYS10/5-28

511.53 Reporting Programs - There are four mechanisms for obtaining monitor error information;
they are messages to the otierator. SYSTAT system status program, SYSDPY system dynamic display
program, and DAEMON,/SYSERR error logger and error report programs.

Messages to the Operator - The operator is told about memory parity errors detected by the
CPU and channel on his OPR console so that he can reconfigure the memory system if
errors persist. Refer to the Operator’s Procedure MEMPAR.RNO in the Software Note-
books for reconfiguration instructions. Refer to Chapter 7 on monitor algorithms in the
DECsystem-IO Monitor Calls Manual for a description of the procedures the monitor fol-
lows to keep the system running in the face of memory parity errors. The operator is also
told about system stop codes on the CTY. Refer to STOPCD.RNO in the Specifications
section of the Notebooks for a listing of each of the stop codes and to CRASH.RNO in the
Operator’s Procedure section.

7 _. S YSTA T - Svstem Status Program - SYSTAT, the system status program, is of particular
interest to operators and Field Service to get a quick idea of how the system is running at the
moment. It prints out the disk error summary and performance statistics since the system
was loaded and the status information about the last error on each disk drive. It does not
keep a log however. Refer to the SYSTAT.RNO Specification in the Software Notebooks.
The SYSTAT P command prints disk performance information.

3. SYSD PY - System Status Dispiay Program - SYSDPY, the system status dispiay program,
displays essentially the same information as SYSTAT prints. However, it is updated dynam-
ically on a display terminal. It does not keep a log.

4. DA EMONISYSERR - Error Logger and Report Programs - In order to create a permanent
history log, DAEMON, an operator service program, writes out the status information
about each error in a file called ERROR.SYS on device SYS:. Refer to DAEMON.RNO in
the Specifications section of the Software Notebooks for a description of the DAEMON
program. Refer to ERROR.RNO in the Specifications section of the Software Notebooks
for a description of the format of the error file, ERROR.SYS. This information can be
printed at any time by the system manager or the Field Service representative. The entire file
can be printed or subsets defined by data and/or type of error can be printed using a pro-
gram called SYSERR. Refer to SYSERR.RNO in the Specifications section of the Software
Notebooks for a description of the meaning of the output of the report program. It is written
for Field Service.

At present the monitor, DAEMON, and SYSERR cooperate to log the following
information:

a. Monitor reloads including date, time, monitor name and reason for reload. Refer to
the Operator’s Procedure CRASH.RNO in the Software Notebooks for a description
of the reasons for reloads.

b. Memory parity errors detected by the CPU. Refer to Chapter 7 of the DECsystem-10
Monitor Calls Manual for a description of the monitor’s actions when a memory parity
error occurs. Refer to MEMPAR.RNO for operator instructions when memory parity
errors occur.

C. Errors detected by the disk and drum controllers. Refer to Chapter 7 on Algorithms in
the DECsystem-IO Monitor Calls Manual and SYSERR.RNO in the Specifications
section of the Software Notebooks for a description of the disk error recovery
algorithms.

SYS10/5-29

d. Errors detected by the channel. Refer to Chapter 7 on Algorithms in the DECsysrern-lO
iMOnircr Calls Manual and SYSERR.RNO in the Specifications section of the Software
Notebooks for a description of the disk error recovery algorithms.

e. Disk performance statistics (not usually gathered by DAEMON V6 unless reassembled
with a conditional assembly switch since file gets too long). Refer to SYSTAT.RNO
and SYSERR.RNO in the Specifications section of the Software Notebooks.

5.11.5.4 Testing Programs - Because error algorithms are not exercised very frequently, extra meas-
ures must be taken to ensure that they are correct. Two test programs are supplied which test the error
recovery procedures. TSTPAR is a comprehensive test and verification program for testing the memo-
ry parity error analysis and recovery of the monitor. It uses the DFlO data channel and the special
(XXX) feature to write bad parity in high and low user segments, the monitor, etc. It then checks the
error data stored by the monitor for correctness. Refer to the System Programming Procedure
MONTST.RNO in the Software Notebooks.

TSTDSK is a disk error exerciser. It simulates disk pack errors using the ETS function of the
STRUUO to test hard and soft disk error recovery for all types of disk errors. Correctness of the
system is determined by hand by running SYSERR. Refer to the System Programming Procedure
MONTST.RNO in the Software Notebooks.

Several classes of diannosric urograms are required to support maintenance functions for a KLIO-
5.11.6 Diagnostic Programs

based system. They are: *

1. Those that run in the

7 _. Those that run in the

3. Those that run in the

3. Those that run in the

PDP-I 1 and diagnose the PDP-11 processor and its devices

PDP-I 1 and diagnose the KL 10 central processor

KL 10 central processor and diagnose KL 10 devices

PDP-8 and diagnose PDP-8 devices.

All diagnostic programs are available on DECtape and magtape CUSPS and on the Field Service
KL 10 diagnostic disk pack (KLAD pack). The diagnostic programs that exercise remote stations are
available on paper tape.

Refer to DECsystem-10 KLlO Diagnostic Index (MD-IO-DDXXA) and DECsystem-10 KLlO Diag-
nostic Abstract (MAINDEC-IO-;MDlOKL) for further information.

AC
AC
ACKN
ACT
AD
ADA
ADB
ADR
ADX
AF
AID

ALGOL
ALT
ALU
API
APL
APR

AR
ARL
ARM
ARMM

ARR

ARX

ARXL

ARXM

ARXR

ASCII

A
Accumulator
Action Count
Acknowledge
Action
Adder
Adder A
Adder B
Address
Adder Extension
Action Flag
Algebraic Interpretive

Dialogue
Algorithmic Language
Alternate
Arithmetic Logic Unit
Automatic Priority Interrupt
A Programming Language
Arithmetic Processor

Register
Arithmetic Register
Arithmetic Register Left
Arithmetic Register Mixer
Arithmetic Register

Mixer Mixer
Arithmetic Register

Right
Arithmetic Register

Extension
Arithmetic Register

Extension Left
Arithmetic Register

Extension Mixer
Arithmetic Register

Extension Right
American Standard Code

for Information
Interchange

APPENDIX A
ABBREVIATIONS AND MNEMONICS

BASIC

BCC
BG
BOOLE
BR
BR
BRK
BRX
BSC

BUF

CAM
CBUS
CCA
CCL
ccw
CCWF

C DIR P
CG
CH
CHA
CHAN
CHK
CHX
CLK
CLP
CLR
COBOL

COMP
CON
COND

B
Beginner’s All-Purpose

Symbolic Instruction Code
Block Check Character
Bus Grant
Boolean
Buffer Register
Bus Request
Break
Buffer Register Extension
Binary Synchronous

Communication
Buffer

C
Cache Address Mixer
Channel Bus
Cache Clearer Address
Channel Control Logic
Channel Command Word
Channel Command

Word Fetch
Cache Directory Parity
Carry Generate
Channel
Channel Address
Channel
Check
Cache Extension
Clock
Command List Pointer
Clear
Common Business Oriented

Language
Complete
Control
Condition

SYS 10/A- 1

CONS
CONTR
CP
CP
CPU
CR
CRA
CRAM

CRC
CRC
CREF
CRM
CRT
CRY
cs
CSH
CTL
CTOM

CTR
CTY
CUSP

cwsx

CYC

D
DAT
DAVFU

DBMS

DDCMP

DDT

DIAG
DIF
DIR
DIS
DISP
DIV
DRAM
DS
DSK

Constant
Controi
Carry Propagate
Central Processor
Central Processing Unit
Control RAM
Control RAM Address
Control RAM Address

Mixer
Channel RAM Control
Cyclic Redundancy Check
Cross Reference
Control RAM
Cathode Ray Tube
Carry
Controller Select
Cache
Control
Controller-toMemory

or Cache-toMemory
Counter
Console/Command Terminal
Commonly Used System

Program
Called With Special

Execute
Cycle

D
Data
Data
Direct Access Vertical

Format Unit
Data Base Management

System
Digital Data Communication

Message Protocol
Dynamic Debugging

Technique
Diagnostic
Difference
Directory
Disable
Dispatch
Divide
Dispatch RA,M
Drive Select
Disk

E
E to T
EBCDIC

EBR
EBUS
ECL
EDP
EDP
EN
ENA
ERR
ERA
EPT
EX
EXP
EXT
EXT TRA REC

F
FE
FE
FLG
FM
FORTRAN
FOV
FPD
FPD
FUNC
FXU

G
GCR
GE
GEN

E
EBox Cyc
ECL to TTL
Extended Binary Coded

Decimal Interchange Code
Executive Base Register
Execution Bus
Emitter-Coupled Logic
EBox Data Path
Electronic Data Processing
Enable
Enable
Error
Error Address
Executive Process Table
Extension
Exponent
External
External Transfer

Receiver

F
Function
Floating Exponent
Front End
Flag
Fast Memory
Formula Translator
Floating Overflow
First Part Done
Floating Point Divide
Function
Floating Exponent

Underflow

G H
Gated
Group Coded Recording
Greater or Equal
Generate
High
High Priority Queue

-

SYS IO/A-2

IN
INC
INH
INS-I-R
INT
INTR
INVAL
I/O
10-I

IPCF

IR
ITPS

J
KLINIK

L
LINED
LPC
LRC

LRU
LSI
LUUO

MB
MBC
MBC
MBX
MB2
MCL
MCS
MEM
MFD
MHz
MIX
MONGEN
MQ
MQM

I
Input
Increment
Inhibit
Instruction
Internal
Interrupt
Invalid
Input/Output
Input/Output

Transfer
Interprocessor

Communications Facility
Instruction Register
In-House Text Preparation

System

J, K, L
Jump
KLIO Integrated Network

for Investigation and
Korrection

Low
Line Editor
Longitudinal Parity Check
Longitudinal Redundancy

Check
Least Recently Used
Large Scale Integration
Local Unimplemented User

Operation

M
Memory Buffer
Massbus Control
M Box Control
M Box Control
MBox Control
Memory Control
Message Control System
Memory
Master File Directory
Megahertz
Mixer
Monitor Generator
Multiplier Quotient
Multiplier Quotient

Mixer

MR
MRU
MS1
MTR
MTTR
MUUO

NICOND

NPR
NRZI
NXM
NXT

OCR
OK
OP
OPSER
OVN

PA
PAG
PAR
PC
PCF#

PCP
PDP
PE
PERF
PF
PGRF
PI
PI A

PID
PIH

PIP

PMA
PMA

PREV
PT

Pl-R
PWR

Master
Most Recently Used
Medium Scale Integration
Meter
Mean Time to Repair
Monitor Unimplemented

User Operation

I\i
Next Instruction

Condition
Non Processor Request
Non-Return-To-Zero Inverter
Non-Existent Memory
Next

0
Optical Character Reader
0 11 Korrect
Operation (code)
Operator Service
Overrun

P
Physical Address
Pager
Parity
Program Counter
Previous Context

Flags from Number
Previous Context Public
Programmed Data Processor
Phase Encoded
Performance
Page Fault
Page Refill
Priority Interrupt
Priority Interrupt

Assignment
Process Identifier
Priority Interrupt

Hold
Peripheral Interchange

Program
Physical Memory Address
Physical Memory Address

Selector
Previous
Page Table/Process

Table
Pointer
Power

SYSIO/A-3

RAM
RD
RE
REC
REF
REG
REL
REQ
RES
RESP
RET
RIP
RJE
ROM
RQ

SADRP

SBR
SBUS
SC
SCAD
SCADA
SCADB
SCD
SCM
SEL
SFD
SH
SHRT
SIM
SOUP

:;EC
SR
ST . SYNC

R
Random Access Memory
Read
Receive ECL
Receive
Reference
Register
Release
Request
Reset
Response
Return
Request In Progress
Remote Job Entry
Read Oniy Memory
Request

S
Storage Address

Parity
Subroutine
Storage Bus
Shift Count
Shift Count Adder
Shift Count Adder A
Shift Count Adder B
Shift Count Adder
Shift Count Mixer
Select
Subtile Directory
Shifter
Shift Right
Simulate
Software Updating Package
Special
Special
State Register
Start
Synchronize

Tto E
TE
T
TECO
TIM
TOPS
TRA
TTL .

UBR
UCODE
UFD
UPT
uuo

VAL
VMA

VRC
XFER
XR
WARN
WC
WD
WR

T, u
TTL to ECL
Transmit ECL
Time
Text Editor and Corrector
Timer
Total Operating System
Transfer
Transistor-Transistor

Logic
User Base Register
Microcode
User File Directory
User Process Table
Unimplemented User

Operation

v, w, x. Y, 2
Valid
Virtual Memory

Address
Vertical Redundancy Check
Transfer
Index Register
Warning
Word Count
Word
Write

-

SYSlO.‘X-4

INDEX

A
Abbreviations, A-l
Access Time, l-6
Accounting Meters, 3-17
Accounting Meters, 4-27
Accumulators, 3-8
Address Calculation, 3-8
Adder, 4-10
Adder Extension, 4- 10
Address

Physical Memory, 3-10
Virtual. 3-10

Address Manipulation Path, 4- 10
Address Mapping, 3- 10
Addressing

Immediate, 3-2
Indexing, 3-2
Indirect, 3-3

AID Language, 5-17
ALGOL Compiler, 5-14
Algorithmic Language, 5-14
API Function Word, 3-17
.4Pl L.anguage, 5- 17
Application Processes, 5-22
APR Device, 4-40
Arithmetic Adder, 4-10
Arithmetic Logic Unit, 4-10
Arithmetic Register, 4-10
Arithmetic Register Extension, 4-10
Assemblers, 5-l 3
Assembler, MACRO, 5-14
Asynchronous Communications, 4-56
Asynchronous Interfaces, 4-61
Asynchronous Line Interface

DLl I-C, 4-43
DLl I-E, 4-43

Asynchronous 16-Line
Multiplexer. DH 11, 4-64

Automatic Priority Interrupt
System Function Word, 3-17

Automatic Restart. 3-l 8

B
BAlO Unit Record Equipment, 4-53
BASIC Compiler, 5-15
Batch, Operator Intervention, 2-8
Batch Controller. 2-6, 2-7
Batch Processing. I- 1
Batch Queue

Input, 2-7
Output, 2-7

Batch Software, 2-6
BC 11-A Unibus, 4-43
Bisync Protocol, 4-58
BLK PI Instruction, 4-29
BLKI Instruction, 4-24, 4-31
BLKO Instruction, 4-24
Block, l-6
Block Check Characters, 4-62
BM873 ROM Loader Module, 4-42
Bootstrap, 4-42
Bootstrap Faciiity, 4-4 1
Bootstrap Functions, 4-46
Bootstrap, System, 5-25
Buffer Register, 4-10
Buffer Register Extension, 4-I 0
Byte Transfer Function, 4-37
Byte Transfer Operations, 4-45

Cache, 4-28
C

Cache Memory, 3-9. 4-48
Card Punch, CPlO-D, 4-55
Card Reader, CRIO, 4-54
CBus, 435
CC A Device, 4-40
Central Processor, 4- 1
Central Processor Interrupt Facility, 4-39
Central Processor Trap Facility, 4-40
Central Processor, KD 1 I-A, 4-42
Central Processors (KAlO, KIlO, KLlO), 3-1
Channel Command List, 4-14
Channel Command Register, Lookahead, 3-15

SYSlO/INDEX-I

Channel
Channel
Channel
Channel
Channel
Channel
Channel

Controller, 3- 15
Errors, 5-30
I/O. 3-13
I/O Processor, 4-28, 4-49
Multiplexer, 3- 14
Processor,
Program,

Channel Transfers,
Channels, 3-1
Channels

External, 3- I4
Internal. 3-14

Clock, l-2
Clock

Master, 4-10

3-13
3-15
5-6

Programmable, 3-l 7
Clock Control Function, Diagnostic,
COBOL Compiler, 5- 15
Code, impure, l-4
Code

Protection. 2-5
Pure, I-4

Command Control Language. 5-7
Command Decoder, 5-3
Command Facility, Console, 4-41
Command Language, 2-5
Command List, 5-6
Command List, Channel, 3-14
Command iModule. Console, 5-24
Command Terminals, 2-4
Communication, I-5
Communication Protocols, 4-56
Communication Software, 5-26
Communication Subsystem, 4-56
Communications

Interjob. 5-12
Interprocess. 5-I 2

Compilers. 5- 13, 5- I4
ALGOL. 5-14
BASIC. j-15
COBOL. 5- I5
FORTRAN. 5-l 6

Compute Bound. 1-3
Computing. Multimode, 2-4
Configuration

DECsystem- 10. 3-I
System. 2-2. 4-l

CON1 Instruction. 4-24
CON0 Instruction. 4-24
CONS1 Instruction. 4-24
CONS0 Instruction. 4-24
Console Command Facility. l-41
Console Command Module. 5-24
Console Computer. 3-18
Console Functions. -t--16

4-37

Console Processor, 4-41. 5-23
Console Processor Functions, 4-u
Console Software, 5-23
Context AC Blocks, 4-22
Context Switching. I-2
Control File, 2-8
Control RAM, 4-22
Control Routine, 5-5
Controllers, I/O, 4-41
Core Memory, 3-8
Core Utilization, 2-5
CPL Language, 5-18
CPU

Model A. 4-10
Model B, 4-10

CPIO-D Card Punch, 4-55
CR10 Card Reader, 4-54
CREF Utility, 5-19
Cross Reference Listing, 5- 19
Cyclic Redundancy Check, 4-62

D
DAS80 Series Remote Station, 4-67
DAS92 Remote Station, 4-69
Data Base Manaqement System, 5-20
Data Fetch Manager, 4-25
Data Path. 4-10
Data Set. l-5, 4-60
Data Storage Manager, 4-25
DATA1 Instruction, 4-24
DATA0 Instruction, 4-24
DATA0 PAG Instruction, 4-22
DBMS-IO Utility, 5-20
DC72-NP Remote Station. 4-66
DC75-NP Communication Subsystem, 4-60
DC76 Communication Subsystem, 4-59
DDCMP. 4-58
DDT Utility, 5-20
Debugging, Program. 5-20
DECnet. 4-6 I
DECsync Protocol, 4-58
DECsystem- 10 Configurations, 3- 1
DECsystem- 10 Primer, 2-I
DECsystem- 1080, I- I
DECsystem- 1080 Configuration, 2-2
DECsystem- 1090. 4- 1

1090 Configuration,
Deposit DECsystem- Operations. 4-44

2-3

Deposit Function. 4-36

SYS IO/INDEX-2

Device
APR. 3-40
CCA. 4-40
Internal. 4-40
IO. 4-41
MTR. 4-40
PAG. 4-40
PDP-11. 442
Peripheral, 2-5
PI. 4-40
Private, l-6
Public, l-6
Real Time, 2-9
Removable Storage, l-7
TIM. 4-40

Device Service Routines, 5-5
DH 11 Asynchronous 16-Line

Multiplexer, 4-64
DI A20. 4-39
Diagnosis, Remote, 5-28
Diagnostic Bus. 3- 18, 4-46
Diagnostic Clock Control Function, 4-37
Diagnostic Computer, 3- 18
Diagnostic Control Logic, 4-10
Diagnostic Cycle, SBus, 4-31
Diagnostic EBox Control Functions, 4-37
Diagnostic Environment, 5-25
Diagnostic Facilities, 4-37
Diagnostic Features, Operating System, 5-27
Diagnostic Functions, 4-46
Diagnostic Load Functions, 4-37
Diagnostic Logic. 5-27
Diagnostic Options, 5-25
Diagnostic Programs, 5-30
Diagnostic Read Functions, 4-37
Diagnostic Software, l-8, 5-27
Diagnostics, Remote, 5-28
Direct I/O, 3-13
Directory

Master File, l-6
User’s File, l-6

Disk Errors, 5-29
Disk File System, RJPO4/06, 4-43
Disk Performance Statistics, 5-30
Disk Quotas, 5-9
Disk Storage Management, 5-10
Disk Subsystem, 4-50
Dispatch RAM, 4-22
DLlO Communications Channel Control, 4-57
DL 1 1 -C Asynchronous Line Interface, 4-43
DL 11 -E Asynchronous Line Interface. 4-43
DM 1 I-BB Modem Control Unit, 4-65
DMAZO. 4-29, 4-31
DN80 Series Remote Station, 4-67

DN87 Universal Front-End. 4-6 1
DN87S Universal Front-End, 4-61
Doorbell Feature, 4-45
Doorbell Function, 4-37
DQl 1 Synchronous Line Interface. 4-65
DS 1 1 Multiple Line

Synchronous Interface, 4-64
DTEZO, 4-36
DTEZO Operating Modes, 4-46
DTEZO Ten-Eleven Interface, 4-43, 4-57
Dump Operations, 4-42
Duplex Channels, 4-58

EBox. 4-10
E

EBox Control Function, Diagnostic, 4-37
EBox Request, 4-24
EBus. 3-13. 4-31
EBus Control Logic, 4-24
EBus High Priority Interrupt Operation, 4-35
EBus Input Operation, 4-33
EBus Output Operation, 4-32
EBus Programmable

Interrupt Operation, 4-34
Editor

LINED. 5-18
RUNOFF, 5-19
SOUP, 5-19
TECO, 5-18

Editors, 5- 18
Effective Address, Calculation, 4-23
Effective Address Manager, 4-25
E/M Interface, 4-29
Error Information, Hardware, 5-28
Error Logger, 5-29
Error Recovery, 2-8
Error Report Program, 5-29
Error Reporting, Monitor, 5-28
Errors

Channel, 5-30
Disk, 5-29

Examine Function, 4-36
Examine Operations, 4-44
External Memory, 4-29
Executive Mode, 1-6, 3-9
Executive Process Table, 3-10
Executive Program, l-2
Executor Routine. 4-25

F
FAILSAFE/BACKUP Utility, 5-20
Failure Procedures, 5-26
Fast Memory, 4-48
Features, System, 3- 1
Field Service Report Program, 5-28

SYSlO/INDEX-3

File
Control, 2-8
Log, 2-6
Saving, 5-20

File Directories, 5-8
File Handler, 5-8
File Handling, 1-6
Fiie Operations, 5- 10
File Protection, 5-9
File Protection Codes, 5-8
File Storage, 4-49
File Structures, 5-9
File System, 5-7
File System, Mass Storage, 2-5
Filename, 5-8
Files. 2-5
FILEX Utility, 5-20
Filing System, 1-6
Firmware, 4-25
Floating Exponent Register, 4-22
FORTRAN Compiler, 5-16
Front-End Privileged, 4-46
Front-End Restricted, 4-46
Full Duplex, 4-58

G
GALAXY-IO, 2-6
General Register Blocks, 4-22

H
Half Duplex, 4-58
Halt Handler, 4-27
Handler

Page Fault. 2-6
Service Request, 2-3

Hardware. 2-1. 4-l

I
Index Registers, 3-8
Indexing. 3-2
Input/Output. l-6, 5-10
Input.‘Output Handler, 127
Input/Output Processor, 1-3
Input Spooler. 2-i
Instruction Execution Unit. J-10
Instruction Format. 3-6
Instruction Modifiers. 3-2
Instruction Prefetch. 4-23
Instruction Register, 4-22
Instruction Set Constructs, 3-3
Instructions

DECsystem- 10. 3-l
KLIO. WI
PDP-I 1. J-41

Interactive Languages, I-4
Interactive Programs, l-2
Interactive Terminals. 2-4
Interleaving Modes, 4-29
Internal Devices, 4-40
Interpreters, 5- 13, 5- I7
Interpreters

AID, 5-17
APL, 5-17
CPL. 5-18

Interprocessor Communication, 4-47
Interprocessor Communication Areas, 4-47
Interprocessor Interrupts, 4-45
Interprocessor interrupt Facility, 4-37
Interprocessor Queue Processing, 4-47
Interrupts. Interprocessor, 4-45
Interrupt Facility

Central Processor, 4-39
Interprocessor, 4-37

Interrupt System, 3- I6
Interval Timer, 3-17. 4-28
I,/0

Channel. 3-13
Direct. 3-13

I/O Bound, l-3
I/O Bus Adapter, 4-39
I/O Controllers, 4-3 I, 4-4 I
I/O Devices, 4-41
I/O Operations

Priority Interrupt, 4-24
Programmed, 4-24

I/O Processor, Channel, 4-49
I/O Programming, 5-5
ITPS-IO Utility, 5-21

J
Jobs

Locking, 2-9
User. 7-6

K
KD I I-A Central Processor, 4-42
Keyboard Terminal. LA36. 4-43
KGI I-A XOR and CRC Unit. 4-62
KJOB-LOGOUT Program, 5-23
KWI I-L Line Clock Option, 4-42
KY 11-D Programmer’s Console, 4-42

SYSlO/INDEX-4

L
LA36 Keyboard Terminal, 4-43
Language

AID. S-17
ALGOL. 5-14
APL, 5-17
BASIC, 5-15
COBOL, 5- 15
Command, 2-5
Command Control, 5-7
CPL. 5-18
FORTRAN, 5- 16

Languages. 2- 1
Languages, Interactive, l-4
Latency Optimization, l-6
Line Clock Option, KWI 1-L. 4-42
Line Multiplexer, l-5
Line Printer

LP07. 4-55
LPlO, 4-54

Line Printer Subsystem, LPlOO, 4-55
Line Scanner, l-5
LINED Editor, 5-18
LINK-10 Utility, 5-21
Loader, Linking, 5-21
Loader Module (ROM), BM873, 4-42
Log File, 2-6
Logic,

ECL. 4-10
TTL. 4-10

LOGIN Program, 5-23
Longitudinal Redundancy Check, 4-62
LP07 Line Printer, 4-55
LPI00 Line Printer Subsystem, 4-55
LPI0 Line Printer, 4-54

M
Machine Instructions, 4-41
MACRO Assembler, 5-14
Magnetic Tape Subsystem, 4-52
Magnetic Tape System, TCl l-G, 4-43
Main Memory, l-2
Main Memory Subsystem, 4-48
Maintainability, 5-28
Massbus Controller, 3-15, 4-38
Mass Storage Devices, 5-7
Mass Storage File System, 2-5
Master Clock, 4-10
Master File Directory, l-6
MBox. 4-27
MBox Read Operation, 4-29
M Box Read-Pause-Write Operation, 4-30
MBox Write Operation, 4-30

MCS-10 Utility, 5-22
Memory Read. 4-49
Memory Address Mapping, 3-10
Memory Blocks, l-3
Memory Bus Adapter, 4-29, 4-31
Memory

Cache, 4-48
External, 4-29
Fast, 4-48
Main, 4-48
Management, 5- 11
MFI I-UP, 4-42
Parity Errors, 5-29
Protection and Relocation, 3- 10
Read-Pause-Write, 4-49
Request Logic, 4-24
Secondary, 4-49, 5-l 1
System, 3-8
Virtual, 2-6, 5-l
Write, 4-49

Message Control System, 5-22
Messages to Operator, 5-29
Meter Board, 4-28
MF 10 Memory, 3-9, 4-29, 4-48
MFl I-UP Memory, 4-42
MGlO Memory, 3-9, 4-29, 4-48
MH 10 Memory, 3-9, 4-29, 4-48
Microcode, 4-22, 4-25
MM1 l-UP Memory, 4-42
Mnemonics, A- 1
Mode,

Executive, l-6, 3-9
Switch, l-6
User, l-6, 3-9

Modem Control Omit, DM 1 I-BB, 4-65
Modems, l-5, 4-59
Modes, Processor, 3-9
MONGEN Program, 5-23
Monitor Calls, l-6
Monitor Error Reporting Programs, 5-28
Monitor Generator Program, 5-23
Monitor Overhead, l-4
Monitor Reloads, 5-29
Monitor Support Programs, 5-23
MTR Device, 4-40
Multiprocessing Systems, 5- 12
Multiplexer. Channel, 3-14
Multimode Computing, 2-4
Multiplier Quotient Register, 4-22
M ultiprogram ming, l-2

N
Network, 5-22. 5-27
Non-Resident Software, 2-4
Number System, 3-6

SYS IO/INDEX-5

0
Operand. Fetch and Store, 4-23
Operating System. l-2, 2-1, 2-3
Operating System Diagnostic Features,
Operation System. Resident, 5- 1
Operator Intervention, Batch, 2-8
Operator. Messages, 5-29
Operator Service Program, 5-28
OPSER Program, 5-23
Output Spooler, 2-7
Overhead. Monitor, 13
Overlapping, I/O Operations, l-6

5-27

P
PAG Device, 4-40
Page Fault Handler, 2-6, 4-27, 5-l 1
Pager, 3-10. 4-27
Parity Errors. Memory, 5-29
PDP-I 1 Devices, 4-42
Performance Analysis Counter, 3-27, 4-29
Peripheral Device Assignment, 5- 10
Peripheral Devices, 2-5
Peripheral Interchange Program, 5-22
Physical Memory Address, 3-10
PI Device. 4-40
PIP Utility, 5-22
Plotter, XY IO. 4-55
Portals. 3- 10
Power Fail. 4-42
Power Outage. 3- 18
Priority Interrupt Handler, 4-27
Priority Interrupt System, l-6. 3-16
Privileged Front-End, 4-46
Process Tables. 3- 10
Processes. Application, 5-22
Processor. Console, 4-41, 5-23
Processor Modes, 3-9
Processor Status Register, 4-10
Program Counter, 4- 10
Program Debugging, 5-10
Program.

Channel. 3- 15
Error Logger. 5-29
Error Report. 5-29
Field Service Report, 5-28
Interactive. l-2
KSOB-LOGOUT. 5-23
LOGIN. 5-23
Monitor Generator, 5-23
:Monitor Error Reporting. 5-28
Operator Service, 5-23
Peripheral Interchange, 5-22
Reentrant. 2-6
System Status, 5-29

Programmable Clocks, 3-27
Programmed Operator, 1-6, 3-2, 5-6
Programmer’s Console, KY 1 I-D, 4-42
Programs.

Diagnostic, 5-20
Monitor Support, 5-22
Test. 5-30
User, 5-l 1

Protection Codes, 2-5
Protocol, 4-58, 4-56
Protocol. Communications, 5-24

Queue,
Q

Job, 1-4
Run, 2-10

Queue Manager and Scheduler, 2-6

R
Random Access Memory,

Control, 4-22
Dispatch, 4-22

Real Time, 2-9
Real Time Device, 2-9
Real Time User, 5-12
Record, I-6
Reentrant Program, 2-6
Reentrant Software, l-4, 5-11
Register Blocks, 3- I3
Register Blocks, General Purpose, 3-8
Reliability, 1-7
Remote Diagnosis, 5-28
Remote Station. 4-66, 4-67, 4-69. 5-26
Remote User, 5-26
Resource Allocator, Sharable. 2-3
Restart,

Automatic, 3- 18
Manual, 3-18

Restricted Front-End, 4-46
RH 10 Massbus Controller, 4-5 1
RH 1 I Massbus Controller, 4-51
RH20. 4-38
R HZ0 Massbus Controller, 4-5 1
RHPO4106 Disk Subsystem, 4-50
RHS04 Disk Subsystem, 4-51
RP04/06 Disk Drive, 4-51
RJP04106 Disk File System, 4-43
RTP04106 Disk Subsystem, 4-50
Round Robin. 1-2
RUNOFF Editor, 5-19

SYSIO/INDEX-6

S
Saving Files, 5-20
SBDIAG Instruction. 4-29
SBus. 4-29
SBus Diagnostic Cycle, 4-3 1
SBus Read Operation, 4-29
SBus Read-Pause-Write Operation, 4-30
SBus Write Operation, 4-30
Scheduler, 5-3
Scheduling Algorithm, 1-3
Scheduling, Dynamic, 1-3
Secondary Memory, 1-2, 4-49
Sensors, Temperature, 3- 18
Service Request Handler, 2-3
Shift Count Adder, 4-22
Shift Count Register, 4-22
Shifter. 4-I 1
Software,

Batch, 2&
Communication, 5-26
Console, 5-23
Diagnostic, 1-8, 5-27
Nonresident, 2-4, 5- 13
Reentrant, l-4, 5-l 1

Software Sharing, l-4
Software Updating, 5- 19
SOUP Editor, 5-19
Spooler,

Input. 2-7
Output. 2-7

Spooling. 1-7. 2-5, 5-10
Start-up and Stop Interface, 4-25
Statistics, Disk Performance, 5-30
Storage Controller, 4-27
Storage. Mass, 2-5
Swapper, 5-4
Swapping, l-2, 2-6
Swapping Disk Subsystem, 4-51
Swapping System, 4-49
Synchronous Communications. 4-56
Synchronous Interfaces, 4-26
Synchronous Line Interface

DQl 1, 4-65
DSll. 4-64

System Bootstrap, 5-25
System Configuration, 2-2
System Features. 3-l
System Queue Manager and Scheduler, 2-6
System Status Program, 5-29

T
Table

Executive Process, 3-10
Process, 3- 10
User Process, 3-10

TCl 1-G Magnetic Tape System, 4-43
TD 10 Tape Control, 4-53
TECO Editor, 5-I 8
Temperature Sensors, 3- 18
Ten-Eleven Data Interface, 4-36
Ten-Eleven Interface, DTEZO, 4-43
Terminals, 4-59
Terminals, Command, 2-4
Terminals, Interactive, 2-4
Test Programs, 5-30
THU16 Magnetic Tape Subsystem, 4-53
TIM Device, 4-40
Time Base, 3-17, 4-28
Time-sharing, 1-2, 2-4
Time-sharing, Principles of, l- 1
Time Slice, l-2
TM02 Master Tape Control, 4-53
TM03 Master Tape Control, 4-53
Transaction Processing, 5-22
Translators. 5- 13
Translators, Logic Level, 4-10
Trap Facility, 3-17
Trap Facility, Centrat Processor, 4-40
Trap Handling, 3-6
TU 16 Magnetic Tape Transport, 4-53
TU56 DECtape Subsystem, 4-53
TU70-72 Magnetic Tape Subsystem, 4-52
TX01 Controller, 4-53
TX02 Controller, 4-53

Unibus, BCl l-A, 4-4:
Unibus Transfers, 4-44
Unimplemented User Operations, 3-6
Unit Record Equipment, 4-53
Updating, Software, 5-29
User File Directory, l-6
User Jobs, 2-6
User Mode, 1-6, 3-9
User Page Map, 3-10
User Programs, 5-l 1
User Process Table, 3-10
User, Remote, 5-26
Utilities, 2- 1, 5-19

SYS IO/INDEX-7

Utility,
CREF. 5-19
DBMS-IO. 5-20
DDT, 5-20
FAILSAFE/BACKUP, S-20
FILEX, 5-20
ITPS-IO, 5-21
LINK- 10, 5-2 1
MCS- IO, 5-22
PIP, 5-22

UUO Handler, 5-5 _..- *. ._ _..

- . .._ ,. v, w, x, Y, z
Virtual Address, 3- 10

.-- - “--Viitual Memory, 2-6, 5-11
-- ._.___k?rtual Memory Address Adder, 4-10

Virtual Memory Address Register, 4-10
XOR axJ .CRC Unit, KG1 1-A. _.-__.__l-. 4-62
XYIO Plotter, 4-55

__ ._- --I.

SYS IO/INDEX-8

Reader’s Comments
L DECsvstem-1080/1090

System Description
EP-108OL-SD-003

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of

our publications.

What is your general reaction to this manual? In your judgment is it complete. accurate, well organized. well

written. etc.? Is it easy to use?

What features are most useful?

What faults do you find with the manual?

Does this manual satisfy the need you think it was intended to satisfy?

Does it satisfy .L‘OIIT needs? Why?

Would you please indicate any factual errors you have found.

Please describe your position.

I\iame Organization

Street Department

City State I’ _-- Zip or Country

--v-B------ FoldHe= - - - - - _ _ - _ - -

----mw- Do Not Tear - Fold Here and Staple - - - - - - -

WSlNESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Posragc will be paid by :

Digital Equipment Corporation

Technical Documentation Department

Maynard. Massachusetts 01754

